Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 1-8    DOI: 10.13306/j.1672-3813.2022.02.001
  本期目录 | 过刊浏览 | 高级检索 |
区块链社交网络中信息传播模型研究
赵炎, 宾晟, 孙更新
青岛大学计算机科学技术学院,山东 青岛 266071
Information Propagation Model in Bloackchain Social Network
ZHAO Yan, BIN Sheng, SUN Gengxin
College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1797 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对传统传播模型难以准确描述区块链社交网络中的信息传播规律的问题,基于区块链社交网络的信息传播特性,并考虑区块链社交网络的激励机制对信息传播的影响,利用演化博弈界定状态转移概率,提出了一种新的区块链社交网络信息传播模型。通过仿真实验分析了群体密度、状态转移概率和激励政策对信息传播的影响。实验结果表明,该模型能够准确描述区块链社交网络中信息的传播规律。所提模型可以有效抑制社交网络中劣质信息传播,进一步构建良好的网络舆论环境。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵炎
宾晟
孙更新
关键词 区块链技术社交网络传播模型演化博弈    
Abstract:Aiming at the problem that the traditional propagation model is difficult to accurately describe the law of information propagation in the blockchain social network, based on the information propagation characteristics of blockchain social networks, this paper considers the influence of the incentive mechanism of blockchain social networks on information propagation, uses evolutionary games to define the state transition probability and proposes a new blockchain social network information propagation model. The influence of group density, state transition probability, and incentive policies on information propagation is analyzed through simulation experiments. Experimental results show that the model can accurately describe the law of information propagation in blockchain social networks. The model proposed in this paper can effectively restrain the propagation of low-quality information in social networks and further build a good network public opinion environment.
Key wordsblockchain technology    propagation model    social network    evolutionary game
收稿日期: 2021-03-30      出版日期: 2022-05-23
ZTFLH:  G206  
  TP311.13  
基金资助:山东省自然基金面上项目(ZR2021MG006);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978-),男,山东青岛人,博士,副教授,主要研究方向为复杂网络中的传播动力学及相关传播模型。   
作者简介: 赵炎(1996-),男,山东菏泽人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
ZHAO Yan, BIN Sheng, SUN Gengxin. Information Propagation Model in Bloackchain Social Network. Complex Systems and Complexity Science, 2022, 19(2): 1-8.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.001      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/1
[1] PHAN T Q, AIROLDI E M. A natural experiment of social network formation and dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(21): 6595-6600.
[2] SAITO K, KIMURA M, OHARA K, et al. Super mediator-a new centrality measure of node importance for information diffusion over social network[J]. Information Sciences, 2016, 329: 985-1000.
[3] ZHANG Y T, TANG J, YANG Z, et al. Cosnet: connecting heterogeneous social networks with local and global consistency[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, ACM Press, 2015: 1485-1494.
[4] MYERS S A, LESKOVEC J. The bursty dynamics of the twitter information network[C]//Proceedings of the 23rd International Conference on World Wide Web. New York, ACM Press, 2014: 913-924.
[5] GUILLE A, HACID H, FAVRE C, et al. Information diffusion in online social networks: a survey[J]. ACM Sigmod Record, 2013, 42(2): 17-28.
[6] SWAN M. Blockchain: Blueprint for a New Economy[M]. USA: O'Reilly Media, Inc, 2015.
[7] ERSOY O, REN Z, ERKIN Z, et al. Information propagation on permissionless blockchains[DB/OL]. (2018-06-14)[2021-04-20].https:∥arxiv.org/pdf/1712.07564.pdf.
[8] 李泰安. 区块链重构网络舆论环境[J]. 传媒, 2017, 21: 87-90.
LI T A. Blockchain reconstructs the network public opinion environment[J]. Media, 2017, 21: 87-90.
[9] 马强, 林浩瀚. 基于区块链技术的网络谣言治理模式探析——以新闻平台 Steemit 为例[J]. 新闻论坛, 2018, 4: 29-33.
MA Q, LIN H H. Analysis on the governance model of network rumors based on blockchain technology——taking news platform Steemit as an example[J]. News Tribune, 2018, 4: 29-33.
[10] 赵丹, 王晰巍, 韩洁平, 等. 区块链环境下的网络舆情信息传播特征及规律研究[J]. 情报杂志, 2018, 37(9): 127-133.
ZHAO D, WANG X W, HAN J P, et al. Research on the propagation characteristics and rules of network public opinion information in block chain environment[J]. Information Science, 2018, 37(9): 127-133.
[11] SUN G, BIN S, JIANG M, et al. Research on public opinion propagation model in social network based on blockchain[J]. CMC-Computers Materials & Continua, 2019, 60(3): 1015-1027.
[12] ANDERSON R M, MAY R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford Univ Press,1991:99.
[13] HARSANYI J C. Games with incomplete information played by “Bayesian” players, I-III Part I. the basic model[J]. Management Science, 1967, 14(3): 159-182.
[14] SMITH J M. The theory of games and the evolution of animal conflicts[J]. Journal of Theoretical Biology, 1974, 47(1): 209-221.
[15] TAYLOR P D, JONKER L B. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40(1/2): 145-156.
[16] SUNSTEIN C R. On Rumors: How Falsehoods Spread, Why We Believe Them, and What Can Be Done[M]. New York: Farrar, Straus and Giroux, 2014: 28-32.
[17] 万佑红, 王小初. 考虑从众效应的谣言传播模型[J]. 计算机应用, 2016, 36(9): 2381-2385.
WAN Y H, WANG X C. Rumor spreading model with conformity effect[J]. Journal of Computer Applications, 2016, 36(9): 2381-2385.
[1] 彭伟华, 侯仁勇, 李光红. 基于演化博弈的网络平台就业多元协同治理研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 9-16.
[2] 李春发, 刘焕星, 胡培培. 政府分类规制、智能平台赋能与药企CSR策略演化[J]. 复杂系统与复杂性科学, 2022, 19(2): 17-30.
[3] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[4] 邓云生, 张纪会. 基于分组选择的可调聚类网络中个体的合作行为研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 39-44.
[5] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[6] 李春发, 曹颖颖, 王聪, 郝琳娜. 平台规制下直播电商三方策略演化博弈与仿真[J]. 复杂系统与复杂性科学, 2022, 19(1): 34-44.
[7] 王丹丹, 菅利荣, 付帅帅. 战略性新兴产业集群生态链协同运作研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 60-66.
[8] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[9] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[10] 付帅帅, 陈伟达, 丁军飞, 王丹丹. 政府对“农超对接”发展影响的多方博弈与仿真[J]. 复杂系统与复杂性科学, 2020, 17(3): 52-61.
[11] 王桂林, 徐勇. 带攻击玩家的演化拥塞博弈的鲁棒性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 47-53.
[12] 芮晨, 张胜发, 陶富, 张维军, 田东华. 基于患者动态知识搜索的医生过度医疗行为研究[J]. 复杂系统与复杂性科学, 2020, 17(2): 86-92.
[13] 全吉, 周亚文, 王先甲. 社会困境博弈中群体合作行为演化研究综述[J]. 复杂系统与复杂性科学, 2020, 17(1): 1-14.
[14] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[15] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed