Network Structure, Knowledge Base and Enterprise Innovation Performance
LI Peizhe1,2, JIAN Lirong2
1. School of Business, Shan Dong University of Political science and Law, Ji'nan 250014, China; 2. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:In order to explore the impact of network structure and knowledge base on enterprise innovation performance, the cooperative innovation network of industry-university-research institute is constructed from the perspective of social network, and the negative binomial regression model is used for empirical analysis. The results show that the industry-university-research innovation network centrality has a significant positive impact on enterprise innovation performance, network structure hole does not show a significant inverted U-shaped relationship with enterprise innovation performance, knowledge base has a significant positive impact on enterprise innovation performance, and the interaction between knowledge base and network centrality has a significant negative impact on enterprise innovation performance, the interaction between knowledge base and structure hole has a positive effect on enterprise innovation performance, but it is not significant.
[1] WANG C, RODAN S, FRUIN M, et al. Knowledge networks, collaboration networks, and exploratory innovation[J]. Academy of Management Journal, 2014,57(2): 484-514. [2] 杨博旭,王玉荣,李兴光.多维邻近与合作创新[J].科学学研究,2019,37(1):154-164. YANG B X, WANG Y R, LI X G. The impact of multidimensional proximity on cooperative innovation [J]. Studies in Science of Science, 2019,37(1): 154-164. [3] ZAHEER A, BELL G G. Benefiting from network position: firm capabilities, structural holes, and performance[J]. Strategic Management Journal, 2005,26(9):809-825. [4] SCHILLING M A, PHELPS C C. Inter firm collaboration networks: the impact of large-scale network structure on firm innovation[J]. Management Science, 2007,53(7):1113-1126. [5] OBSTFELD D. Social networks, the tertius iungens orientation, and involvement in innovation[J]. Administrative Science Quarterly, 2005,50(1):100-130. [6] 李晨蕾,柳卸林,朱丽.国际研发联盟网络结构对企业创新绩效的影响研究——基于社会资本视角[J].科学学与科学技术管理,2017,38(1):52-61. LI C L, LIU X L, ZHU L. Influence of structural characteristics of international R&D alliance network on company's innovative performance: based on social capital theory[J]. Science of Science and Management of S & T,2017,38(1): 52-61. [7] 高霞,其格其,高群婷.知识转移效果的结构性指标对企业创新绩效的影响[J].科学学与科学技术管理,2018,39(5):89-100. GAO X, QI G Q, GAO Q T. The impact of structural indicators of knowledge transfer effect on firm innovation performance [J]. Science of Science and Management of S & T, 2018,39(5): 89-100. [8] 刘岩,蔡虹.企业知识基础网络结构与技术创新绩效的关系——基于中国电子信息行业的实证分析[J].系统管理学报,2012,21(5):655-661. LIU Y, CAI H. Structure of knowledge base and a firm's innovative performance: an empirical test in Chinese electrical & electronic industry [J]. Journal of Systems & Management, 2012,21(5): 655-661. [9] GUAN J, LIU N. Exploitative and exploratory innovations in knowledge network and collaboration network: a patent analysis in the technological field of nano-energy[J]. Research Policy, 2016, 45(1): 97-112. [10] LI H J, ZHAN B, WANG Z, et al. Dynamical clustering in electronic commerce systems via optimization and leadership expansion[J]. IEEE Transactions on Industrial Informatics, 2019,16(8): 5327-5334. [11] HUGGINS R, PROKOP D. Network structure and regional innovation: a study of university-industry ties[J].Urban Studies,2017,54(4):931-952. [12] OWEN-SMITH J, POWELL W W. Knowledge networks as channels and conduits: the effects of spillovers in the Boston biotechnology community[J]. Organization Science, 2004, 15(1): 5-21. [13] 其格其,高霞,曹洁琼.我国ICT产业产学研合作创新网络结构对企业创新绩效的影响[J].科研管理, 2016,37(S1):110-115. QI G Q, GAO X, CAO J Q. The impact of industry-university-research collaboration innovation network structure on firm innovation performance in China's ICT industry [J]. Science Research Management, 2016,37(S1): 110-115. [14] BURT R S. Structural Holes: The Social Structure of Competition[M]. Boston: Harvard University Press, 1992. [15] LIU C H. The effects of innovation alliance on network structure and density of cluster[J]. Expert Systems with Applications, 2011,38(1):299-305. [16] CAPALDO A. Network structure and innovation: the lever aging of a dual network as a distinctive relational capability[J]. Strategic Management Journal, 2007,28(6):585-608. [17] 马源培,杨卓璇,李慧嘉.结合Bass模型和LTV的创新产品扩散预测[J].聊城大学学报(自然科学版),2020,33(4):26-32. MA Y P, YANG Z X, LI H J. Innovative product diffusion forecasting combined Bass model and LTV [J]. Journal of Liaocheng University(Natural Science Edition), 2020,33(4): 26-32. [18] FREEMAN L C. Centrality in social networks: conceptual clarification[J]. Social Networks, 1979,1(3): 15-239. [19] 单晓红,王春稳,刘晓燕,等.基于知识网络的开放式创新社区知识发现研究[J].复杂系统与复杂性科学, 2020,17(1):62-70,94. SHAN X H, WANG C W, LIU X Y, et al. Research on knowledge discovery of open innovation community based on knowledge network [J]. Complex Systems and Complexity Science, 2020,17(1): 62-70, 94. [20] 王朋飞,李守伟,林琳霖,等.产学研合作网络复杂性分析——以镇江市为例[J].复杂系统与复杂性科学,2013,10(1):60-67. WANG P F, LI S W, LIN L L, et al. Complexity analysis of industry-university-institute cooperative network-a case study of Zhenjiang city [J]. Complex Systems and Complexity Science, 2013,10 (1): 60-67. [21] 温忠麟,侯杰泰,张雷.调节效应与中介效应的比较和应用[J].心理学报,2005,37(2): 268-274. WEN Z L, HOU J T, ZHANG L. A comparison of moderator andmediator and their applications [J]. Acta Psychologica Sinica, 2005,37(2): 268-274.