Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 45-52    DOI: 10.13306/j.1672-3813.2022.02.006
  本期目录 | 过刊浏览 | 高级检索 |
带多个信道的布尔控制网络可观测性
沈宇桐, 徐勇
河北工业大学理学院,天津 300401
Observability of Boolean Control Networks with Multiple Channels
SHEN Yutong, XU Yong
School of Science, Hebei University of Technology, Tianjin 300401, China
全文: PDF(992 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对带有多个信道的布尔控制网络,应用矩阵半张量积理论,将经多个信道进行输出的布尔控制网络进行建模并研究其可观测性问题。首先,通过矩阵半张量积得到该模型的代数表示;其次,基于该代数表示证明了布尔控制网络在自由控制序列与状态反馈控制下可观测的充分必要条件;最后,给出使得系统可观测的反馈控制矩阵的构造算法,并给出算例说明研究结果的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈宇桐
徐勇
关键词 布尔控制网络状态反馈控制矩阵半张量积可观测性    
Abstract:The Boolean control networks with multiple channels are investigated in this paper. The theory of semi-tensor product of matrices is applied to model Boolean control networks with outputting through multiple channels, and to study its observability. Firstly, by using of the semi-tensor product of matrices, the algebraic expression of this model is obtained; Secondly, based on the algebraic expression, the sufficient and necessary conditions for observability of Boolean control networks are proved under free control sequence and state feedback control; Finally, an algorithm is designed to construct the feedback control matrix which makes the system observable. An example is given to illustrate the validity of the results.
Key wordsBoolean control networks    state feedback control    semi-tensor product of matrices    observability
收稿日期: 2021-02-10      出版日期: 2022-05-23
ZTFLH:  TP273  
基金资助:河北省自然科学基金(G2019202350)
通讯作者: 徐勇(1971-),男,山东蒙阴人,博士,教授,主要研究方向为复杂网络。   
作者简介: 沈宇桐(1997-),女,河北唐山人,硕士研究生,主要研究方向为布尔网络。
引用本文:   
沈宇桐, 徐勇. 带多个信道的布尔控制网络可观测性[J]. 复杂系统与复杂性科学, 2022, 19(2): 45-52.
SHEN Yutong, XU Yong. Observability of Boolean Control Networks with Multiple Channels. Complex Systems and Complexity Science, 2022, 19(2): 45-52.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.006      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/45
[1] KAUFFMAN S A. Metabolic stability and epigenesis in randomly constructed genetic nets[J]. Theoretical Biology, 1969, 22(3): 437-467.
[2] ALBERT R, BARABASI A. Dynamics of complex systems: scaling laws for the period of Boolean networks[J]. Physical Review Letters, 2000, 84(24): 5660-5663.
[3] HEIDEL J, MALONEY J, FARROW C L, et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems[J]. International Journal of Bifurcation and Chaos, 2003, 13(3): 535-552.
[4] KAUFFMAN S A, PETERSON C, SAMUELSSON B, et al. Genetic networks with canalyzing Boolean rules are always stable[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17102-17107.
[5] LU J Q, LI H T, LIU Y, et al. Survey on semi-tensor product method with its applications in logical networks and other finite valued systems[J]. IET Control Theory Applications, 2017, 11(13): 2040-2047.
[6] CHENG D Z, QI H S. Analysis and control of Boolean networks: a semi-tensor product approach[C]// Proc of 7th Asian Control Conf. Hong Kong: IEEE, 2009: 1352-1356.
[7] LIN L, CAO J D, LU G P, et al. Set stabilization of Boolean control networks with impulsive effects: an event triggered approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs Control, 2020, 67(7): 1244-1248.
[8] XU M X, LIU Y, LOU J G, et al. Set stabilization of probabilistic Boolean control networks: a sampled data control approach[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3816-3823.
[9] ZHONG J, LIU Y, KOU K L, et al. On the ensemble controllability of Boolean control networks using STP method[J]. Applied Mathematics and Computation, 2019, 358: 51-62.
[10] ZHU Q X, LIU Y, LU J Q, et al. Controllability and observability of Boolean control networks via sampled-data control[J]. IEEE Transactions on Control of Network Systems, 2019, 6(4): 1291-1301.
[11] CHEN H, LIANG J, LU J. Partial synchronization of interconnected Boolean networks[J]. IEEE Transactions on Cybernetics, 2016, 47(1): 258-266.
[12] ZHANG H, WANG X, LIN X. Synchronization of Boolean networks with different update schemes[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(5): 965-972.
[13] GAO J W, LIN S D, FAN J X, et al. An average optimal control approach to the set stabilization problem for Boolean control networks[J]. Asian Journal of Control, 2019, 21(6): 2596-2603.
[14] LI B W, LU J Q, LIU Y, et al. The outputs robustness of Boolean control networks via pinning control[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1): 201-209.
[15] ZHANG X, WANG Y H, CHENG D Z. Output tracking of Boolean control networks[J]. IEEE Transactions on Automatic Control, 2020, 65(6): 2730-2735.
[16] XU X J, LI H T, LI Y L, et al. Output tracking control of Boolean control networks with impulsive effects[J]. Mathematical Methods in the Applied Sciences, 2018, 41(4): 1554-1564.
[17] ZHANG K Z, ZHANG L J, SU R. A weighted pair graph representation for reconstructibility of Boolean control networks[J]. SIAM Journal on Control and Optimization, 2016, 54(6): 3040-3060.
[18] WU Y H, XU J X, SUN X M, et al. Observability of Boolean multiplex control networks[J]. Scientific Reports, 2017, 7: 46495.
[19] LIU F Q, CUI Y X, WANG J M, et al. Observability of probabilistic Boolean multiplex networks[J]. Asian Journal of Control, 2021, 23(3): 1583-1590.
[20] GUO Y Q. Observability of Boolean control networks using parallel extension and set reachability[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6402-6408.
[21] ZHANG X, MENG M, WANG Y H, et al. Criteria for observability and reconstructibility of Boolean control networks via set controllability[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(4): 1263-1267.
[22] LI Y Z, SHI L, CHENG P, et al. Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach[J]. IEEE Transactions on Automatic Control, 2015, 60(10): 2831-2836.
[23] PASQUALETTI F, BICCHI A, BULLO F. Consensus computation in unreliable networks: a system theoretic approach[J]. IEEE Transactions on Automatic Control, 2011, 57(1): 90-104.
[24] MAO Z H, JIANG B, SHI P. Protocol and fault detection design for nonlinear networked control systems[J]. IEEE Transactions on Circuits Systems II Express Briefs, 2009, 56(3): 255-259.
[25] MARTINELLI A. Nonlinear unknown input observability: extension of the observability rank condition[J]. IEEE Transactions on Automatic Control, 2019, 64(1): 1-16.
[26] GRACY S, FEDERICA G, KIBANGOU A Y. Structural and strongly structural input and state observability of linear network systems[J]. IEEE Transactions on Control of Network Systems, 2017, 5(4): 2062-2072.
[27] LI F F, DANIEL W C. Observability of Boolean networks with redundant channels[J]. IEEE Transactions on Circuits and Systems, 2020, 67(10): 1989-1993.
[28] XU W Y, WANG Z D, DANIEL W C. Finite horizon H∞consensus for multiagent systems with redundant channels via an observer-type event-triggered scheme[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1-10.
[1] 王桂林, 徐勇. 带攻击玩家的演化拥塞博弈的鲁棒性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 47-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed