Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 21-29    DOI: 10.13306/j.1672-3813.2020.01.003
  本期目录 | 过刊浏览 | 高级检索 |
中国股市极值收益率的长记忆性研究
苑莹, 张同辉, 庄新田
东北大学工商管理学院,沈阳 110167
Long Memory of Extreme Returns in Chinese Stock Market
YUAN Ying, ZHANG Tonghui, ZHUANG Xintian
School of Business Administration, Northeastern University, Shenyang 110167, China
全文: PDF(2263 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 与以往对股市收益率及波动率的长记忆性及有效性研究不同,聚焦于金融市场极端波动行为,以中国股票市场最具代表性指数——上证指数为研究样本,将金融市场按照一定期间划分为不同的时间窗口,将每个时间窗内的极值收益率组成一个时间序列,并将该极值收益率序列作为实证研究对象。分别运用重标极差分析、消除趋势波动分析等多种统计方法,对上海股票市场极值收益率的长记忆性展开深入研究,结果发现无论是极值收益率序列还是极值波动率序列都具有明显的长记忆性特征,且极值收益率序列和极值波动率序列呈现出的长记忆性特征要明显强于原始全样本收益率序列本身,这说明市场的极端波动行为之间具有一定的依赖性,市场的极端波动行为在一定程度上是可测的。此外,进一步分析了极大值及其相应波动率序列之间、极小值及其相应波动率序列之间以及极大值与极小值之间的互相关关系,结果发现不同的极值序列间呈现出各自特有的、强度不同的相互依赖关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苑莹
张同辉
庄新田
关键词 极值收益率波动率长记性性消除趋势波动分析    
Abstract:Different from the previous studies on the long memory and effectiveness of stock market returns and volatility, this paper focuses on the extreme fluctuation behavior of financial markets. Taking the most representative index of Chinese stock market, Shanghai stock index, as the sample, the financial market is divided into different time windows according to a certain period, and the extreme returns in each time window are formed into a time series. Taking extreme return series as the empirical research object, this paper studies the long memory of extreme return in Shanghai stock market by using multiple statistical methods such as rescaling range analysis and Detrended fluctuation analysis. The results show that both extreme return series and extreme volatility series have obvious long memory characteristics. The long memory characteristics of the extreme series is obviously stronger than that of the original full sample return series itself, which shows that there is a certain dependence between the extreme fluctuation behavior of the market, and the extreme fluctuation behavior of the market is measurable to a certain extent. In addition, the correlation between the maximum series and its corresponding volatility series, between the minimum series and its corresponding volatility series, and between the maximum series and the minimum series are further analyzed. The results show that the different extreme series show their own unique and different intensity interdependence.
Key wordsextreme return    volatility    long memory    detrended fluctuation analysis
收稿日期: 2019-05-10      出版日期: 2020-04-29
ZTFLH:  F830.9  
基金资助:国家自然科学基金(71671145);国家社会科学基金(18BJY238);教育部人文社会科学基金(17YJCZH235);中央高校基本科研业务费项目(N180614002,N170606003,N180606001)
作者简介: 苑莹(1980-),女,辽宁沈阳人,博士,教授,主要研究方向为金融市场复杂性等。
引用本文:   
苑莹, 张同辉, 庄新田. 中国股市极值收益率的长记忆性研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 21-29.
YUAN Ying, ZHANG Tonghui, ZHUANG Xintian. Long Memory of Extreme Returns in Chinese Stock Market. Complex Systems and Complexity Science, 2020, 17(1): 21-29.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.003      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/21
[1]Mantegna R N, Stanley H E. Scaling behavior in the dynamics of an economic index[J].Nature,1995,376:46-49.
[2]Cont R. Empirical properties of asset returns: Stylized facts and statistical issues[J]. Quantitative Finance, 2001, 1:223-236.
[3]Greene M, Fielitz B. Long term dependence in common stock returns[J].Journal of Financial Economics,1977,4(3):339-349.
[4]Norouzzadeh P, Jafari G R. Application of multifractal measures to Tehran price index[J]. Physica A, 2005,356: 609-627.
[5]Mariani M C, Florescu I, Beccar Varela M P, et al. Long correlations and Levy models applied to the study of memory effects in high frequency (tick) data[J]. Physica A, 2009,388(8):1659-1664.
[6]Kasman A, Kasman S, Torun E. Dual long memory property in returns and volatility: Evidence from the CEE countries’ stock markets[J]. Emerging Markets Review, 2009,10(2):122-139.
[7]Bisaglia L, Gerolimetto M. Forecasting long memory time series when occasional breaks occur[J]. Economics Letters, 2008,98(3):253-258.
[8]Melo Mendes B V, Kolev N. How long memory in volatility affects true dependence structure[J]. International Review of Financial Analysis, 2008, 17(5):1070-1086.
[9]Barkoulas J T, Baum C F, Travlos N. Long memory in the greek stock market[J]. Applied Financial Economics,2000, 10(2):177-184.
[10] Sensoy A, Tabak B M. Time-varying long term memory in the European union stock markets[J].Physica A,2015,436(1-2):147-158.
[11] Caporale G M, Gil-Alana L, Plastun A, et al. Long memory in the Ukrainian stock market and financial crises[J]. Journal of Economics and Finance, 2016, 40(2):235-257.
[12] Lonnbark C. Asymmetry with respect to the memory in stock market volatilities[J]. Empirical Economics, 2016, 50(4):1409-1419.
[13] Li D, Nishimura Y, Men M. The long memory and the transaction cost in financial markets[J].Physica A, 2016, 442:312-320.
[14] Bhar R. Testing for long-term memory in yen/dollar exchange rate[J].Financial Engineering and the Japanese Markets[J].1994,1(2):101-109.
[15] Alptekin N. Long memory analysis of USD / TRL exchange rate[J].International Journal of Social Sciences, 2006,1( 2): 111-116.
[16] Oh G, Kim S, Eom C. Long-term memory and volatility clustering in high-frequency price changes[J]. Physica A,2008,387( 5/6): 1247-1254.
[17] Kang S H, Mclver R, Park S Y et al. Long memory features evolve in the time-varying process in Asia-Pacific foreign exchange markets[J].Procedia Economics and Finance, 2014,14:286-294.
[18] Souzaa S R. Long memory testing for Fed Funds futures' contracts[J]. Chaos, Solitons and Fractals, 2008,37(1):180-186.
[19] Coakley J. Long memory and structural breaks in commodity future markets[J]. Journal of Futures Markets,2011,31(11):1076-1113.
[20] Chkili W, Aloui C, Ngyen D K. Instabilities in the relationships and hedging strategies between crude oil and US stock markets: Do long memory and asymmetry matter?[J]Journal of International markets, institutions & Money,2014,33:354-366.
[21] 王鹏,魏宇,王鸿.沪深300股指期货的风险测度模型研究[J].数理统计与管理,2014,33,(4):129-136.
Wang Pang, Wei Yu, Wang Hong. Backtesting risk models for CSI300 index futures[J]. Journal of applied statistics and management, 2014,33,(4):129-136.
[22] 杨科,田凤平.长记忆性、结构突变条件下中国股市波动率的高频预测[J].管理工程学报,2013,27(2):724-733.
Yang Ke, Tian Fengping. Volatility projection with high frequency data under long term memory and structural break in Chinese stock markets[J]. Journal of industrial engineering/engineering management, 2013,27(2):724-733.
[23] 曹广喜.中国汇市与股市间的时变冲击影响研究[J].管理科学,2013,26(1):89-100.
Cao Guangxi. Research on impact of time-varying shocks from foreign exchange market and stock market[J].Journal of management science, 2013,26(1):89-100.
[24] 苑莹,庄新田,金秀.中国股市的日内效应、长记忆性及多重分形性:基于价-量交叉相关性视角[J]. 系统管理学报,2016,25(1):28-35.
Yuan Ying, Zhuang Xintian, Jin Xiu. Intraday effects,long memory and multifractal characteristics in Chinese stock markets: a perspective from cross correlation between price and trading volume[J].Journal ofsystems & management, 2016,25(1):28-35.
[25] 谭政勋,张欠. 中国股票市场的长期记忆性与趋势预测研究[J]. 统计研究,2016,10:57-66.
Tan Zhengxun, Zhang Qian. Research on the long-term memory of Chinese stock market and its trend prediction[J]. Statistical Research,2016,10:57-66.
[26] 田存志,程富强,付辉.关于金融市场长记忆性研究的若干争论[J].经济学动态, 2016, 6:141-149.
Tian Cunzhi, Cheng Fujiang, Fu Hui.Some arguments on the study of long memory in financial market[J]. Economics perspectives, 2016, 6:141-149.
[27] Muchnik L, Bunde A, Havlin S. Long term memory in extreme returns of financial time series [J].Physica A, 2009,388:4145-4150.
[28] Eichner J F, Kantelhardt J W, Bunde A, et al. Extreme value statistics in records with long-term persistence[J]. Physical Review E,2006, 73(1Pt2):016130.
[29] Norouzzadeh P, Rahmani B. A multifractal detrended fluctuation description of Iranian rial-US dollar exchange rate[J]. Physica A, 2006,367: 328-336.
[1] 陈志英, 肖忠意, 李永奎. 国际股市隐含波动率溢出效应分析[J]. 复杂系统与复杂性科学, 2019, 16(4): 56-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed