Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 30-36    DOI: 10.13306/j.1672-3813.2020.01.004
  本期目录 | 过刊浏览 | 高级检索 |
融合多关系的矩阵分解社会化推荐算法
周双, 宾晟, 孙更新
青岛大学数据科学与软件工程学院,山东 青岛 266071
Matrix Factorization Social Recommendation Algorithm Based on Multiple Social Relationships
ZHOU Shuang, BIN Sheng, SUN Gengxin
School of data science and software engineering, Qingdao University, Qingdao 266071, China
全文: PDF(1311 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在现实的社交网络中,用户之间往往存在多种关系,而现有的社会化推荐算法都只考虑一种关系对推荐结果的影响。基于多子网复合复杂网络模型,将用户间的多种社交关系引入用户特征矩阵,提出了基于多关系的矩阵分解社会化推荐算法。通过对2个真实数据集上的实验结果分析,发现加入多种社交关系的矩阵分解社会化推荐方法比传统的矩阵分解算法在推荐准确率方面有显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周双
宾晟
孙更新
关键词 矩阵分解算法社交网络推荐算法多子网复合复杂网络    
Abstract:In real social networks, there are multiple relationships between users. The existing social recommendation algorithms only consider the impact of one relationship on the recommendation results. Based on the multi-subnet composited complex network model, different social relationships among users are introduced into the user feature matrix. In this paper, matrix factorization social recommendation algorithm based on multi-relationship is proposed. By analyzing the experimental results on two real datasets, the social matrix factorization recommendation method with multi-relationship has a significant improvement in recommendation accuracy compared with the traditional matrix factorization algorithm.
Key wordsmatrix factorization algorithm    social network    recommendation algorithm    multi-subnet composited complex network
收稿日期: 2019-07-28      出版日期: 2020-04-29
ZTFLH:  C912  
  N941  
基金资助:山东省自然基金面上项目(ZR2017MG011);教育部人文社会科学研究青年项目(15YJC860001);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978-),男,山东青岛人,博士,副教授,主要研究方向为复杂网络中的传播动力学及相关传播模型。   
作者简介: 周双(1993-),女,山东烟台人,硕士研究生,主要研究方向为复杂网络中的传播动力学及其相关模型。
引用本文:   
周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
ZHOU Shuang, BIN Sheng, SUN Gengxin. Matrix Factorization Social Recommendation Algorithm Based on Multiple Social Relationships. Complex Systems and Complexity Science, 2020, 17(1): 30-36.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.004      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/30
[1]Lü L, Medo M, Chi H Y, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49.
[2]Guo Q, Song W, Hou L, et al. Effect of the time window on the heat-conduction information filtering medel[J]. Physica A: Statistical Mechanics and Its Applications, 2014,401(5):15-21.
[3]陈志敏, 李志强. 基于用户特征和项目属性的协同过滤推荐算法[J]. 计算机应用, 2011, 31(7):1748-1750.
Chen Zhimin, Li Zhiqiang. Collaborative filtering recommendation algorithm based on user characteristics and item attributes[J]. Journal of Computer Applications,2011,31(7):1748-1750.
[4]Deshpande M, Karypis G. Item-Based top-n, recommendation algorithms[J]. ACM Trans on Information Systems, 2004,22(1):143-177.
[5]Konstan J A, Miller B N, Maltz D, et al. GroupLens: Applying collaborative filtering to usenet news. Communications of the ACM, 2000,40(3):77-87.
[6]Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-38.
[7]Massa P, Avesani P. Trust-aware collaborativefiltering for recommender systems[C]//OTM confederated International Conferences "on the Move to Meaningful Internet Systems", Springer, Berlin, Heidelberg, 2004: 492-508.
[8]Massa P, Avesani P. Trust-aware recommendersystems[C]//Proc of RecSys, New York, NY, USA, 2007.
[9]Li W, Qi J, Yu Z, et al. A social recommendation method based on? trust propagation and singular value decomposition[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(1):807-816.
[10] 邓小方, 钟元生, 吕琳媛, 等. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52( 3):51-59, 67.
Deng Xiaofang, Zhong Yuansheng, Lü Linyuan, et al. Mass diffusion on coupled social networks[J].Journal of Shandong University(Natural Science), 2017, 52( 3):51-59, 67.
[11] 郭兰杰, 梁吉业, 赵兴旺. 融合社交网络信息的协同过滤推荐算法[J]. 模式识别与人工智能, 2016, 29( 3):281-288.
Guo Lanjie, Liang Jiye, Zhao Xingwang. Collaborative filtering recommendation algorithm incorporating social network information[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3):281-288.
[12] 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34 (3): 43-48.
Hu Huicheng, Chen Pinghua. Research on implicit trust relationship aware recommendation algorithm[J]. Journal of Guangdong University of Technology, 2016, 29( 3):281-288.
[13] Mnih A, Salakhutdinov R. Probabilistic matrix factorization[C]// Advances in neural information processing systems, Vancouver, British Columbia, Canada, 2007: 1257-1264.
[14] 郭宁宁, 王宝亮,侯永宏. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018, 12(2):208-217.
Guo Ningning,Wang Baoliang,Hou Yonghong,et al. Collaborative filtering recommendation algorithm based on characteristics of social network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2):208-217.
[15] 隋毅.多子网复合复杂网络模型及其相关性质的研究[D]. 青岛:青岛大学,2012.
Sui Yi. Research on multi-subnet composited complex network and its related properties [D]. Qingdao: Qingdao University, 2012.
[16] Mao Y Y, Liu J X, Hu R, et al. Sigmoid function-basedWeb service collaborative filtering recommendation algorithm[J]. Journal of Frontiers of Computer Science andTechnology, 2017, 11(2): 314-322.
[17] Ma H, Zhou D Y, Liu C, et al. Recommender systems with social regularization[C]// Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, Hongkong, China, 2011: 287-296.
[1] 郭强, 岳强, 李仁德, 刘建国. 入用户情感的高阶奇异值分解推荐算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 1-9.
[2] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[3] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[4] 李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed