Abstract:For a Duffing equation with symmetrical double potential well, which is derived from a self-rotating mass-spring pendulum with three-order nonlinear stiffness, the periodic solutions type, initiation mode and evolving behavior adapting to the frequency of excitation are investigated meticulously by Harmonic Balance Method and numerical simulation. Some rewarding results are obtained. This Duffing system has local periodic solutions in the region near its equilibrium point and many global periodic solutions with symmetry, antisymmetry and dissymmetry. The global periodic solutions derive from saddle-node bifurcation. The local periodic solutions and the dissymmetrical global periodic solutions evolve directly into chaos passing through double-periodic bifurcation. The symmetrical global 1-periodic solutions evolve into chaos through passing the double-periodic bifurcation only after losting their symmetry by symmetry-breaking, and the antisymmetric global 3-periodic solutions evolve into quasi-periodic solutions through passing the triple-periodic bifurcation also after lost their symmetry by antisymmetry-breaking.The studies help to raise the understanding of the nonlinear phenomenon and the evolution of solutions of the Duffing equation.
肖世富, 陈红永, 牛红攀. 一类对称双势阱Duffing系统周期解的衍生与演化[J]. 复杂系统与复杂性科学, 2017, 14(3): 103-110.
XIAO Shifu, CHEN Hongyong, NIU Hongpan. Periodic Solutions Initiation and Evolving of a Symmetrical Double-Potential Well Duffing System with Forced Harmonic Excitation. Complex Systems and Complexity Science, 2017, 14(3): 103-110.
[1]丁同仁. 常微分方程定性方法的应用[M]. 北京: 高等教育出版社, 2004. [2]刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2003. [3]闻邦椿, 李以农, 韩清凯. 非线性振动理论中的解析方法及工程应用[M].沈阳: 东北大学出版社, 2001. [4]Marinca V, Herisanu N. Periodic solutions of Duffing equation with strong nonlinearity[J]. Chaos, Soliton and Fractals, 2008, 37(1): 144149. [5]陈艳锋, 郑建华, 吴新跃,等. 无阻尼Duffing方程高精度近似解研究[J]. 机械科学与技术, 2008, 27(12): 15911594. ChenYanfeng, Zheng Jianhua, WuXinyue, et, al. On high-accuracy approximate solution of undamped Duffing equation[J]. Mechanical Science and Technology for Aerospace Engineering,2008, 27(12): 15911594. [6]王坤, 关新平, 丁喜峰,等. Duffing振子系统周期解的唯一性与精确周期信号的获取方法[J]. 物理学报, 2010, 59(10): 68596863. Wang Kun, Guan Xinping Ding Xifeng,et al. Acquisition method of precise periodic signal and uniqueness of periodic solutions of Duffing oscillator system[J]. Acta Physica Sinica, 2010, 59(10): 68596863. [7]冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 10151019. Feng Shaodong, Chen Liqun. Homotopy analysis approach to the Duffing-Harmonic oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 10151019. [8]Novak S, Frehlich R G. Transition to chaos in the duffing oscillator[J]. Physical Review, 1982, 26A: 36603663. [9]毕勤胜, 陈予恕. Duffing系统解的转迁集的解析表达式[J]. 力学学报, 1997, 29(5): 573581. Bi Qinsheng, Chen Yushu. Analytical expression of transition boundaries of the solution of Duffing systems[J]. Acta Mechanica Sinica, 1997, 29(5): 573581. [10] Bishop S R, Sofroniou A, Shi P. Symmetry-breaking in the response of the parametrically excited pendulum model[J]. Chaos, Solitons and Fractals, 2005, 25(2): 257264. [11] Mann B P,Koplow M A. Symmetry breaking bifurcations of a parametrically excited pendulum[J]. Nonlinear Dynamics, 2006, 46(4): 427437. [12] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变[J]. 物理学报, 2009, 58(6): 38793805. Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors[J]. Acta Physica Sinica, 2009, 58(6): 38793805. [13] Zhang Y, Du L, Yue X L, et al. Analysis of symmetry breaking bifurcation in duffing system with random parameter[J]. Computer Modeling in Engineering & Sciences, 2015, 106(1): 3751.