Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (3): 103-110    DOI: 10.13306/j.1672-3813.2017.03.011
  本期目录 | 过刊浏览 | 高级检索 |
一类对称双势阱Duffing系统周期解的衍生与演化
肖世富, 陈红永, 牛红攀
中国工程物理研究院总体工程研究所,四川 绵阳 621999
Periodic Solutions Initiation and Evolving of a Symmetrical Double-Potential Well Duffing System with Forced Harmonic Excitation
XIAO Shifu, CHEN Hongyong, NIU Hongpan
Institute of Systems Engineering, CAEP, Mianyang 621999, China
全文: PDF(1880 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对自旋单自由度三次强化弹簧—质量振子系统建立的对称双势阱Duffing方程,通过把数值计算与谐波平衡半解析分析相结合,系统分析了该类Duffing系统在谐波强迫激励下周期解随激励频率变化的衍生与演化现象,获得了不同频段谐波强迫激励下系统周期解的类型、周期解的衍生模式与演化规律。分析结果表明,该类Duffing方程存在平衡点临域局部周期解以及鞍结点分岔衍生的对称、反对称与非对称等多种全局周期解;局部或无对称性的全局周期解直接通过倍周期分岔通向混沌运动;全局对称周期一解和反对称周期三次谐波解首先各自发生对称和反对称破缺,再通过倍周期分岔演化为混沌。研究有助于深化对Duffing方程非线性现象及其演化规律的认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖世富
陈红永
牛红攀
关键词 Duffing方程谐波平衡法周期解鞍结点分岔对称性破缺混沌    
Abstract:For a Duffing equation with symmetrical double potential well, which is derived from a self-rotating mass-spring pendulum with three-order nonlinear stiffness, the periodic solutions type, initiation mode and evolving behavior adapting to the frequency of excitation are investigated meticulously by Harmonic Balance Method and numerical simulation. Some rewarding results are obtained. This Duffing system has local periodic solutions in the region near its equilibrium point and many global periodic solutions with symmetry, antisymmetry and dissymmetry. The global periodic solutions derive from saddle-node bifurcation. The local periodic solutions and the dissymmetrical global periodic solutions evolve directly into chaos passing through double-periodic bifurcation. The symmetrical global 1-periodic solutions evolve into chaos through passing the double-periodic bifurcation only after losting their symmetry by symmetry-breaking, and the antisymmetric global 3-periodic solutions evolve into quasi-periodic solutions through passing the triple-periodic bifurcation also after lost their symmetry by antisymmetry-breaking.The studies help to raise the understanding of the nonlinear phenomenon and the evolution of solutions of the Duffing equation.
Key wordsduffing equation    harmonic balance method    periodic solution    saddle-node bifurcation    symmetry-breaking    chaos
收稿日期: 2017-06-13      出版日期: 2019-01-10
ZTFLH:  O322  
基金资助:国家自然科学基金(11472256,11402244),中物院院长基金(YZ2015011);中物院发展基金(2015B0201024)
作者简介: 肖世富(1970),男,四川中江人,博士,研究员,主要研究方向为柔性多体系统动力学、计算固体力学。
引用本文:   
肖世富, 陈红永, 牛红攀. 一类对称双势阱Duffing系统周期解的衍生与演化[J]. 复杂系统与复杂性科学, 2017, 14(3): 103-110.
XIAO Shifu, CHEN Hongyong, NIU Hongpan. Periodic Solutions Initiation and Evolving of a Symmetrical Double-Potential Well Duffing System with Forced Harmonic Excitation. Complex Systems and Complexity Science, 2017, 14(3): 103-110.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.03.011      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I3/103
[1]丁同仁. 常微分方程定性方法的应用[M]. 北京: 高等教育出版社, 2004.
[2]刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2003.
[3]闻邦椿, 李以农, 韩清凯. 非线性振动理论中的解析方法及工程应用[M].沈阳: 东北大学出版社, 2001.
[4]Marinca V, Herisanu N. Periodic solutions of Duffing equation with strong nonlinearity[J]. Chaos, Soliton and Fractals, 2008, 37(1): 144149.
[5]陈艳锋, 郑建华, 吴新跃,等. 无阻尼Duffing方程高精度近似解研究[J]. 机械科学与技术, 2008, 27(12): 15911594.
ChenYanfeng, Zheng Jianhua, WuXinyue, et, al. On high-accuracy approximate solution of undamped Duffing equation[J]. Mechanical Science and Technology for Aerospace Engineering,2008, 27(12): 15911594.
[6]王坤, 关新平, 丁喜峰,等. Duffing振子系统周期解的唯一性与精确周期信号的获取方法[J]. 物理学报, 2010, 59(10): 68596863.
Wang Kun, Guan Xinping Ding Xifeng,et al. Acquisition method of precise periodic signal and uniqueness of periodic solutions of Duffing oscillator system[J]. Acta Physica Sinica, 2010, 59(10): 68596863.
[7]冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 10151019.
Feng Shaodong, Chen Liqun. Homotopy analysis approach to the Duffing-Harmonic oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 10151019.
[8]Novak S, Frehlich R G. Transition to chaos in the duffing oscillator[J]. Physical Review, 1982, 26A: 36603663.
[9]毕勤胜, 陈予恕. Duffing系统解的转迁集的解析表达式[J]. 力学学报, 1997, 29(5): 573581.
Bi Qinsheng, Chen Yushu. Analytical expression of transition boundaries of the solution of Duffing systems[J]. Acta Mechanica Sinica, 1997, 29(5): 573581.
[10] Bishop S R, Sofroniou A, Shi P. Symmetry-breaking in the response of the parametrically excited pendulum model[J]. Chaos, Solitons and Fractals, 2005, 25(2): 257264.
[11] Mann B P,Koplow M A. Symmetry breaking bifurcations of a parametrically excited pendulum[J]. Nonlinear Dynamics, 2006, 46(4): 427437.
[12] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变[J]. 物理学报, 2009, 58(6): 38793805.
Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors[J]. Acta Physica Sinica, 2009, 58(6): 38793805.
[13] Zhang Y, Du L, Yue X L, et al. Analysis of symmetry breaking bifurcation in duffing system with random parameter[J]. Computer Modeling in Engineering & Sciences, 2015, 106(1): 3751.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed