Abstract:Combined with the topological characteristics and electrical characteristics, this paper proposes an integrated multi-attribute decision method for identifying key nodes in a power grid. Firstly, based on the complex network theory, several evaluation indicators are proposed and calculated considering the topology characteristics and the electrical characteristics of a power grid, an evaluation matrix is obtained. Then the final decision matrix is obtained by weighting the evaluation matrix combined with the analytic hierarchy process and the coefficient of variation method. Finally, the TOPSIS method combined with grey correlation degree is used to calculate the ranking of the important nodes in the power grid.In order to compare the advantages and disadvantages of different identification methods, the network efficiency and synchronization performance are adopted. An actual local power grid is used to further verify the effectiveness a feasibility of the proposed method.
何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
HE Ming, ZOU Yanli, LIANG Mingyue, LI Zhihui, GAO Zheng. Critical Node Identification of a Power Grid Based on Multi-Attribute Decision. Complex Systems and Complexity Science, 2020, 17(3): 27-37.
[1] Alireza S, Mohammad K, Ali M. Vulnerability analysis of power grid with the network science approach based on actual grid characteristics: A case study in Iran[J].Physica A:Statistical Mechanics and Its Applications, 2018:S0378437118309993. [2] Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J].IEEE Transactions on Power Systems, 2005, 20(4):1922-1928. [3] Albert, R, Albert, I, Nakarado G L . Structural vulnerability of the North American power grid[J]. Physical Review E, 2004, 69(2):025103. [4] 易俊,卜广全,郭强, 等.巴西“3·21”大停电事故分析及对中国电网的启示[J].电力系统自动化, 2019, 43(02):7-15. Yi Jun, Bu Guangquan, GuoQiang, et al. Analysis on blackout in brazilian power grid on March 21, 2018 and its enlightenment to power grid in China[J].Power System Automation, 2019, 43 (02): 7-15. [5] 魏震波,刘俊勇,朱国俊,等.电力系统脆弱性理论研究[J]. 电力自动化设备, 2009(7): 38-43. Wei Zhenbo, Liu Junyong, Zhu Guojun, et al. Power system vulnerability[J].Power Automation Equipment, 2009 (7): 38-43. [6] 谢琼瑶,邓长虹,赵红生,等.基于有权网络模型的电力网节点重要度评估[J].电力系统自动化,2009,33(4):21-24. XieQiongyao, Deng Changhong, Zhao Hongsheng,et al. Evaluation method for node importance of power grid based on the weighted network model[J].Power System Automation, 2009,33(4): 21-24. [7] 林鸿基,赵昱宣,林冠强,等.基于改进节点重要度贡献矩阵的电网关键节点识别[J].电力建设, 2017(10):67-73. Lin Hongji, Zhao Yuxuan, Lin Guanqiang, et al. Critical node identification in power systems based on improved node importance contribution matrix[J].Power Construction, 2017(10): 67-73. [8] 王佳裕, 顾雪平, 王涛,等. 一种综合潮流追踪和链接分析的电力系统关键节点识别方法[J]. 电力系统保护与控制, 2017, 45(6):22-29. Wang Jiayu, GuXueping, Wang Tao, et al. Power system critical node identification based on power tracing and link analysis method[J].Power System Protection and Control,2017,45(6):22-29. [9] Lin Z Z, Wen F S, Zhao J H, et al. Controlled islanding schemes for interconnected power systems based on coherent generator group identification and wide-area measurements[J].Journal of Modern Power Systems and Clean Energy, 2016,4(3):440-453. [10] 刘健, 徐精求,程红丽,等.配电网抗灾变性分析及其在配电网规划安全运行中的应用[J].中国电力, 2005, 38(5):34-38. Liu Jian, Xu Jingqiu, Cheng Hongli, et al. Analysis of anti-accident ability of distribution networks and its applications in planning ,safe operation & restoration[J]. China Electric Power,2005,38(5):34-38. [11] 吴辉,彭敏放,张海艳,等.基于复杂网络理论的配电网节点脆弱度评估[J].复杂系统与复杂性科学, 2017(1), 38-45. Wu Hui, Peng Minfang, Zhang Haiyan, et al. Node vulnerability assessment for distribution network based on complex network theory[J]. Complex System and Complexity Science,2017(1),38-45. [12] Du Y, Gao C, Hu Y, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and its Applications,2014,399:57-69. [13] 孙玉刚.灰色关联分析及其应用的研究[D]. 南京航空航天大学, 2007. Sun Yugang. Research on grey incidence analysis and its application[D]. Nanjing University of Aeronautics and Astronautics, 2007. [14] Wei B,Deng Y. A cluster-growing dimension of complex networks: from the view of node closeness centrality[J]. Physica A: Statistical Mechanics and Its Applications,2019,522:80-87. [15] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017(3):95-100. Fu Jie, ZouYanli, XieRong. The critical lines identification of the power grids based on the complex network theory[J]. Complex system and complexity science,2017(3):95-100. [16] 谭玉东.复杂电力系统脆弱性评估方法研究[D].长沙:湖南大学,2013. Tan Yudong. Research on complex power system vulnerability assessment methods[D]. Changsha: Hunan University, 2013. [17] 李昌超,康忠健,于洪国,等.基于改进PageRank算法的电网关键节点辨识方法[J]. 电力建设,2018,39 (11):43-50. Li Changchao, Kang Zhongjian, Yu Hongguo, et al. Identification of critical node in power grid based on modified PageRank algorithm[J]. Power Construction, 2018, 39 (11):43-50. [18] 李发旭,卫良.复杂网络子图中心性分析[J].青海师范大学学报(自然科学版),2013,29(4):11-16. Li Fa Xu, Wei Liang. Analysis of subgraph centrality in complex networks[J].Journal of Qinghai Normal University (Natural Science Edition),2013,29(4):11-16. [19] 温丽华.灰色系统理论及其应用[D].哈尔滨:哈尔滨工程大学, 2003. Wen Lihua. Grey system theory and application[D]. Harbin: Harbin Engineering University, 2003. [20] 刘思峰.灰色系统理论的产生与发展[J].南京航空航天大学学报,2004(2):267-272. Liu Sifeng. Emergence and development of grey system theory and its forward trends[J].Journal of Nanjing University of Aeronautics and Astronautics, 2004(2):267-272. [21] 郭海洋,柳劲松,程浩忠,等.基于模糊数学和组合赋权法的分布式电源并网综合评估[J].现代电力,2017,34(2):14-19. Guo Haiyang, Liu Jinsong, Cheng haozhong, et al. Comprehensive evaluation of grid-connected distributed generation based on fuzzy mathematics and combinated weighting method[J].Modern Power, 2017,34(2): 14-19. [22] 张文朝,顾雪平.应用变异系数法和逼近理想解排序法的风电场综合评价[J].电网技术,2014,38(10):2741-2746. Zhang Wenchao, GuXueping. Comprehensive evaluation of wind farms using variation coefficient method and technique for order preference by similarity to ideal solution[J]. Grid Technology, 2014,38(10): 2741-2746. [23] 宋伶俐,徐秋实,吴耀文.计及权重的电网投资效益评价与多目标优化[J].电力学报,2013,28(6):503-506. Song Lingli, Xu Qiushi, Wu Yaowen. Evaluation and multi-objective optimization of power grid investment benefits taking into account the weights[J]. Journal of Electric Power, 2013,28 (6):503-506. [24] 王炫丹,李华强,廖烽然,等.基于电压抗干扰因子与综合影响因子的电网关键节点辨识[J].电力自动化设备,2018,38(4):82-88. Wang Xuandan, Li Huaqiang, Liao fengran, et al. Critical node identification of power grid based on voltage anti-interference factors and comprehensive influence factors[J]. Power Automation Equipment, 2018,38 (4):82-88. [25] 张程, 于永军, 李华强, 等. 考量能量裕度及权重因子的电力系统节点综合脆弱性分析[J]. 电力自动化设备, 2016, 36(3):136-141. Zhang Cheng, Yu Yongjun, Li Huaqiang, et al. Analysis of nodal comprehensive vulnerability considering energy margin and weight factor for power system[J]. Power Automation Equipment, 2016, 36 (3): 136-141. [26] 雷成, 刘俊勇, 魏震波,等. 计及网络传导能力与抗干扰能力的节点综合脆弱评估模型[J]. 电力自动化设备, 2014, 34(7):144-149. Lei Cheng, Liu Junyong, Wei Zhenbo, et al. Integrative evaluation model of node vulnerability considering network transmission ability and anti-interference ability[J]. Electric Power Automation Equipment, 2014, 34 (7): 144-149. [27] FilatrellaG , Nielsen A H , Pedersen N F . Analysis of a power grid using a Kuramoto-like model[J]. The European Physical Journal B-Condensed Matter, 2008, 61(4):485-491.