Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (2): 1-9    DOI: 10.13306/j.1672-3813.2018.02.001
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的差分进化算法研究
丁毓, 刘三阳, 陈静静, 白艺光
西安电子科技大学数学与统计学院,西安 710126
Differential Evolution Algorithm Based on Complex Networks
DING Yu, LIU Sanyang, CHEN Jingjing, BAI Yiguang
School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
全文: PDF(5125 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 提出一种基于复杂网络的差分进化算法。将差分进化算法中的个体用网络中的节点表示,差分进化算法中的动力学传播方向用网络中的有向边表征,从而构建复杂网络。在变异阶段,提出利用个体的目标函数值及网络参数信息依概率选取目标向量的机制,并引入收敛因子,用于改变不同函数类型的收敛速度。在选择阶段,针对差分进化算法中子代与其对应父代关联性低的特点,提出新型的基于排序的选择策略。最后,用21个标准测试函数对所提出算法进行测试,并将其与一些主流差分进化算法进行比较,测试结果表明,所提出算法在收敛速度和求解精度方面具有显著优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁毓
刘三阳
陈静静
白艺光
关键词 差分进化复杂网络变异算子选择算子动力学优化    
Abstract:A new differential evolution algorithm based on complex network is presented. Individuals are represented by nodes and dynamic propagation direction is represented by directed edges, thereby constructing a complex network. in particular,in the mutation stage, the mechanism of selecting the target vector based on probability using the individual objective function value and network parameter information is proposed, and the convergence factor is introduced to change the convergence speed of different function types. In the selection phase, a new sorting-based selection strategy is proposed. Finally, the proposed algorithm is tested with 21 standard test functions, and compared with some mainstream differential evolution algorithms. The test results show that the proposed algorithm has significant advantages both in convergence speed and in solution accuracy.
Key wordsdifferential evolution    complex networks    mutation    selection    dynamics    optimization
收稿日期: 2018-03-29      出版日期: 2019-01-09
ZTFLH:  TP18  
基金资助:国家自然基金项目(61772391)
作者简介: 丁毓(1993-),女,河南周口人,硕士研究生,主要研究方向为优化方法、复杂网络。
引用本文:   
丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
DING Yu, LIU Sanyang, CHEN Jingjing, BAI Yiguang. Differential Evolution Algorithm Based on Complex Networks. Complex Systems and Complexity Science, 2018, 15(2): 1-9.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.02.001      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I2/1
[1]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[2]Storn R P, Kenneth P, Differential evolution-a simple and efficient adaptive scheme for global optimizationover continuous spaces[R].California(Berkeley): Technical Report TR-95-012, ICSI, 1995.
[3]Kovaevic' D, Mladenovic' N, Petrovic' B, et al. DE-VNS: Self-adaptive differential evolution with crossoverneighborhood search for continuous global optimization[J]. Computers & Operations Research, 2014, 52:157-169.
[4]dos Santos Coelho L, Ayala H V H, Mariani V C. A self-adaptive chaotic differential evolution algorithm usinggamma distribution for unconstrained global optimization[J]. Applied Mathematics and Computation, 2014, 234: 452-459.
[5]Mlakar M, Petelin D, Tuar T, et al. GP-DEMO: differential evolution for multiobjective optimization based on gaussian process models[J]. European Journal of Operational Research, 2015, 243(2):347-361.
[6]刘三阳, 张平, 朱明敏. 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014(1):123-128.
Liu Sanyang, Zhang Ping, Zhu Mingmin. Artificial bee colony algorithm based on local search[J]. Control and Decision, 2014(1):123-128.
[7]Gao W F, Liu S Y. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012,39(3):687-697.
[8]高卫峰, 刘三阳, 黄玲玲. 受启发的人工蜂群算法在全局优化问题中的应用[J]. 电子学报, 2012, 40(12):2396-2403.
Gao Weifeng, Liu Sanyang, Huang Lingling. Inspired artificial bee colony algorithm for global optimization problems[J]. Acta Electronica Sinica, 2012,40(12):2396-2403.
[9]Boccaletti S, Latora V, Moreno Y,等. 复杂网络:结构与动力学[J]. 复杂系统与复杂性科学, 2006, 3(3):56-94.
Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J].Complex Systems and Complexity Science, 2006, 3(3):56-94.
[10] Boccaletti S, Latora V, Moreno Y,等. 复杂网络: 结构和动力学[J]. 复杂系统与复杂性科学, 2006, 3(4):52-90.
Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J]. Complex Systems and Complexity Science, 2006, 3(4):52-90.
[11] Ashlock D, Smucker M, Walker J. Graph based genetic algorithms[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC 99, Washington. 1999, 2: 1362-1368.
[12] Mabu S, Hirasawa K, Hu J. A graph-based evolutionary algorithm: Genetic network programming (GNP) and its extension using reinforcement learning[J]. Evolutionary Computation, 2007, 15(3): 369-398.
[13] Zelinka I, Davendra D, Snáel V, et al. Preliminary investigation on relations between complex networks and evolutionary algorithms dynamics[C]//2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 2010: 148-153.
[14] Zelinka I, Davendra D D, Chadli M, et al. Evolutionary Dynamics as the Structure of Complex Networks[M]. Berlin, Heidelberg: Springer, 2013: 215-243.
[15] Skanderova L, Fabian T. Differential evolution dynamics analysis by complex networks[J]. Soft Computing, 2017, 21(7): 1817-1831.
[16] Allen B, Lippner G, Chen Y T, et al. Evolutionary dynamics on any population structure[J]. Nature, 2017, 544(7649): 227-230.
[17] Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.
[1] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-1.
[2] 薄桂华, 黄敏. 考虑拖期风险的第四方物流路径优化问题模型与求解[J]. 复杂系统与复杂性科学, 2018, 15(3): 7-7.
[3] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 8-8.
[4] 景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-11.
[5] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 5-5.
[6] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[7] 肖琴, 罗帆. 机场外来物风险监管策略的演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 18-25.
[8] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[9] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[10] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[11] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[12] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
[13] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[14] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[15] 郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed