Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (2): 10-17    DOI: 10.13306/j.1672-3813.2018.02.002
  本期目录 | 过刊浏览 | 高级检索 |
利用复杂网络技术分析地震活动性特征
张正帅1, 陈时军1, 周晨2, 赵瑞1
1.山东省地震局,济南 250014;
2.黑龙江省地震局,哈尔滨 150000
On the Features of Seismicity with Complex Network Technology
ZHANG Zhengshuai1, CHEN Shijun1, ZHOU Chen2, ZHAO Rui1
1.Shandong Earthquake Agency, Ji'nan 250014, China;
2.Heilongjiang Earthquake Agency, Harbin 150000,China
全文: PDF(6505 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 将研究区内的地震活动性数据映射为一种复杂网络模型—地震网络,从复杂网络的角度描述地震活动时空复杂性特征。分析了所构建的地震网络,结果显示它满足小世界无标度网络特性,大震前后地震网络的规模会出现同震效应,且震后地震网络的节点数和边数会有明显增大的现象。另外,通过对地震网络k-核解析发现,在一些大地震发生之前,最高核数会有明显高值异常,震后最高核数会衰减恢复至与震前相当的稳定状态。这些结果表明地震事件之间存在复杂的相互作用行为,通过地震网络表现出的统计规律,为分析研究地震发生规律提供了一种新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张正帅
陈时军
周晨
赵瑞
关键词 地震活动性复杂网络地震网络k-核最高核    
Abstract:The seismic data taken in the geographical region under consideration are mapped to a complex network-Earthquake Network. From the perspective of complex network, we describe the spatial-temporal complexity of seismicity. In this article, we construct earthquake network and investigate it. Firstly, the results show that these earthquake networks are scale-free and small-work networks with the power-law connectivity distributions. Secondly, the scale represents co-seismic effect. Moreover, nodes and edges increase greatly after the main shock. Finally, the method of k-core decomposition is applied to the earthquake network, and an important phenomenon is found that the value of the highest layer shows obvious high-value abnormalities before some earthquakes and it will return to a stable state after the earthquake. These results reveal complex intrinsic interactions between seismic events. The earthquake network, which presented certain statistical laws, will provide a new way for us to analyze and research the seismological system.
Key wordsseismicity    complex network    earthquake network    k-core    the highest layer
收稿日期: 2018-05-22      出版日期: 2019-01-09
ZTFLH:  P315.08  
基金资助:山东省地震局青年基金(JJ1706Y)
作者简介: 张正帅(1989-),男,山东淄博人,助理工程师,主要研究方向为数字地震学。
引用本文:   
张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
ZHANG Zhengshuai, CHEN Shijun, ZHOU Chen, ZHAO Rui. On the Features of Seismicity with Complex Network Technology. Complex Systems and Complexity Science, 2018, 15(2): 10-17.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.02.002      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I2/10
[1]刘桂萍. 地震活动不均匀性及其断层相互作用的力学机制研究[J]. 国际地震动态, 2002,2: 9-10.
Liu Guiping. Research on mechanical mechanism of seismicity inhomogeneity and the earthquake interaction of seismic fault activity[J]. Recent Developments in World Seismology, 2002,2: 9-10.
[2]Gutenberg B,Richter C F.Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188.
[3]Omori F.On the aftershocks of earthquakes [J].Journal of College of Science, Imperial University of Tokyo, 1894,7:111-119.
[4]Ogata Y.Statistical Models for earthquake occurrences and residual analysis for point processes[J]. Journal of the American Statistical Association,1988,83(401):9-27.
[5]Steeples D W, Dan D S. Far-field aftershocks of the 1906 earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86(4):921-924.
[6]Kilb D,Gomberg J,Bodin P. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature, 2000, 408(6812):570-4.
[7]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature,1998,393(6684): 440-442.
[8]Barabási A L, Albert R.Emergence of scaling in random networks[J]. Science,1999,286(5439): 509-512.
[9]Abe S, Suzuki N. Law for the distance between successive earthquakes[J]. Journal of Geophysical Research Solid Earth, 2003, 108(B2) :2113.
[10] Abe S, Suzuki N. Scale-free statistics of time interval between successive earthquakes[J]. Physica AStatistical Mechanics & Its Applications, 2004, 350(2):588-596.
[11] Abe S, Suzuki N. Complex-network description of seismicity[J].Nonlinear Processes in Geophysics,2006,13(2):145-150.
[12] Abe S, Suzuki N.Scale-free network of earthquakes[J].Europhys Lett,2002,65(65):581-586.
[13] Abe S, Suzuki N. Small-world structure of earthquake network[J]. Physica AStatistical Mechanics & Its Applications, 2004, 337(1):357-362.
[14] Abe S. Geometry of escort distributions[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(3):031101.
[15] 谢周敏.地震活动的网络拓扑结构和网络动力学行为[J].震灾防御技术,2011,6(1):1-17.
Xie Zhoumin. Network topology and network dynamical behavior of seismicity[J].Technology for Earthquake Disaster Prevention,2011,6(1):1-17.
[16] 何璇,赵海,蔡巍,等.基于时空影响域的地震网络构造方法[J].东北大学学报(自然科学版),2014,35(10):1395-1399.
He Xuan, Zhao Hai, Cai Wei, et al. An earthquake network construction method based on time-space influence domain[J].Journal of Northeastern University(Natural Science), 2014,35 (10):1395-1399.
[17] He X, Zhao H, Cai W, et al. Earthquake networks based on space-time influence domain[J]. Physica AStatistical Mechanics & Its Applications, 2014, 407(C):175-184.
[18] 赵海,张娅,何璇,等.基于时空影响域的地震网络动力学演化特征分析[J].东北大学学报(自然科学版),2015,36(9):1232-1236.
Zhao Hai, Zhang Ya, He Xuan, et al. Dynamic evolution analysis of the earthquake network based on the time-space influence domain[J].Journal of Northeastern University(Natural Science),2015,36(9):1232-1236.
[19] 李光光,赵海,何璇,等.基于k-核解析的地震活动网络特征分析[J].地震学报,2015,37(2):239-248,370.
Li Guangguang, Zhao Hai, He Xuan, et al. The characteristics of earthquake networks based on k-core decomposition[J].ActaSeismologica Sinica,2015,37(2):239-248,370.
[20] Pastén D, Torres F, Toledo B A, et al. Non-universal critical exponents in earthquake complex networks[J]. Physica A Statistical Mechanics & Its Applications, 2017, 491:445-452.
[21] Rezaei S, Moghaddasi H, Darooneh A H. Preferential attachment in evolutionary earthquake networks[J]. Physica A Statistical Mechanics and its Applications,2018,495:172-179.
[22] Abe S, Suzuki N. Determination of the scale of coarse graining in earthquake network[J]. Epl, 2012, 87(4):48008-48012.
[23] 刘丽芳,李志海,蒋长胜.云南地区地震目录最小完整性震级研究[J].地震研究,2012,35(4):491-499.
Liu Lifang, Li Zhihai, Jiang Changsheng. Research on minimum magnitude of completeness for earthquake catalogue in Yunnan region[J].Journal of Seismological Research,2012,35(4):491-499.
[24] 龙锋,闻学泽,倪四道.区域最小完整性震级时空分布的确定──以龙门山断裂带为例[J].地震,2009,29(3):27-36.
Long Feng, Wen Xueze, Ni Sidao. Determination of temporal-spatial distribution of the regional minimum magnitudes of completeness:application to the Longmenshanfaultzone[J].Earthquake,2009,29(3):27-36.
[25] Abe S, Suzuki N. Dynamical evolution of clustering in complex network of earthquakes[J]. European Physical Journal B, 2007, 59(1):93-97.
[26] 孙玺菁, 司守奎. 复杂网络算法与应用[M]. 北京:国防工业出版社, 2015:55-59.
[27] Ferreira D S R, Papa A, Menezes R. Small world picture of worldwide seismic events[J]. Physica A Statistical Mechanics & Its Applications, 2014, (408):170-180.
[28] Abe S, Suzuki N. Complex earthquake networks: hierarchical organization and assortativemixing[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74(2):026113.
[29] Zhang G Q, Zhang G Q, Yang Q F, et al. Evolution of the Internet and its cores[J]. New Journal of Physics, 2008, 10(12):123027.
[30] 胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证——基于k-core层次划分的共词分析方法[J]. 情报学报, 2014, 33(2):130-139.
Hu Changing, Chen Guo. An exploration of hierarchical domain knowledge network and its micro-morphology based on Co-word analysiswith reliable relation [J].Journal of The China Society for Scientific and Technical Information, 2014, 33(2):130-139.
[31] Seidman S B. Network structure and minimum degree [J]. Social Networks, 1983, 5(3):269-287.
[32] Gaertler M,Patrignani M. Dynamic analysis of the autonomous system graph[C]// IPS 2004,International Workshop on Inter-domain Performance and Simulation.Budapest,Hungary,2004:13-24.
[33] Gkantsidis C, Mihail M, Zegura E. Spectral analysis of internet topologies[C]// Twenty-Second Annual Joint Conference of the IEEE Computer and Communications,San Francisco, 2003:364-374.
[34] Uczak T. Size and connectivity of the k-core of a random graph[J]. Discrete Mathematics,1991,91(1):61-68.
[35] 郭世泽,陆哲明. 复杂网络基础理论[M].北京:科学出版社, 2012:45:48.
[36] 张亮. 复杂网络增长模型及社区结构划分方法[D]. 大连:大连理工大学硕士论文, 2008.
Zhang Liang. Complex network growth model and method of community structure division[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2008.
[1] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-1.
[2] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 5-5.
[3] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 8-8.
[4] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[5] 胡发稳, 李丽菊, 王沛, 韩忠太. 族际冲突的社会表征:词汇网络分析视角[J]. 复杂系统与复杂性科学, 2018, 15(2): 54-61.
[6] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[7] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[8] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[9] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
[10] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[11] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[12] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
[13] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed