Abstract:The seismic data taken in the geographical region under consideration are mapped to a complex network-Earthquake Network. From the perspective of complex network, we describe the spatial-temporal complexity of seismicity. In this article, we construct earthquake network and investigate it. Firstly, the results show that these earthquake networks are scale-free and small-work networks with the power-law connectivity distributions. Secondly, the scale represents co-seismic effect. Moreover, nodes and edges increase greatly after the main shock. Finally, the method of k-core decomposition is applied to the earthquake network, and an important phenomenon is found that the value of the highest layer shows obvious high-value abnormalities before some earthquakes and it will return to a stable state after the earthquake. These results reveal complex intrinsic interactions between seismic events. The earthquake network, which presented certain statistical laws, will provide a new way for us to analyze and research the seismological system.
张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
ZHANG Zhengshuai, CHEN Shijun, ZHOU Chen, ZHAO Rui. On the Features of Seismicity with Complex Network Technology. Complex Systems and Complexity Science, 2018, 15(2): 10-17.
[1]刘桂萍. 地震活动不均匀性及其断层相互作用的力学机制研究[J]. 国际地震动态, 2002,2: 9-10. Liu Guiping. Research on mechanical mechanism of seismicity inhomogeneity and the earthquake interaction of seismic fault activity[J]. Recent Developments in World Seismology, 2002,2: 9-10. [2]Gutenberg B,Richter C F.Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185-188. [3]Omori F.On the aftershocks of earthquakes [J].Journal of College of Science, Imperial University of Tokyo, 1894,7:111-119. [4]Ogata Y.Statistical Models for earthquake occurrences and residual analysis for point processes[J]. Journal of the American Statistical Association,1988,83(401):9-27. [5]Steeples D W, Dan D S. Far-field aftershocks of the 1906 earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86(4):921-924. [6]Kilb D,Gomberg J,Bodin P. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature, 2000, 408(6812):570-4. [7]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature,1998,393(6684): 440-442. [8]Barabási A L, Albert R.Emergence of scaling in random networks[J]. Science,1999,286(5439): 509-512. [9]Abe S, Suzuki N. Law for the distance between successive earthquakes[J]. Journal of Geophysical Research Solid Earth, 2003, 108(B2) :2113. [10] Abe S, Suzuki N. Scale-free statistics of time interval between successive earthquakes[J]. Physica AStatistical Mechanics & Its Applications, 2004, 350(2):588-596. [11] Abe S, Suzuki N. Complex-network description of seismicity[J].Nonlinear Processes in Geophysics,2006,13(2):145-150. [12] Abe S, Suzuki N.Scale-free network of earthquakes[J].Europhys Lett,2002,65(65):581-586. [13] Abe S, Suzuki N. Small-world structure of earthquake network[J]. Physica AStatistical Mechanics & Its Applications, 2004, 337(1):357-362. [14] Abe S. Geometry of escort distributions[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(3):031101. [15] 谢周敏.地震活动的网络拓扑结构和网络动力学行为[J].震灾防御技术,2011,6(1):1-17. Xie Zhoumin. Network topology and network dynamical behavior of seismicity[J].Technology for Earthquake Disaster Prevention,2011,6(1):1-17. [16] 何璇,赵海,蔡巍,等.基于时空影响域的地震网络构造方法[J].东北大学学报(自然科学版),2014,35(10):1395-1399. He Xuan, Zhao Hai, Cai Wei, et al. An earthquake network construction method based on time-space influence domain[J].Journal of Northeastern University(Natural Science), 2014,35 (10):1395-1399. [17] He X, Zhao H, Cai W, et al. Earthquake networks based on space-time influence domain[J]. Physica AStatistical Mechanics & Its Applications, 2014, 407(C):175-184. [18] 赵海,张娅,何璇,等.基于时空影响域的地震网络动力学演化特征分析[J].东北大学学报(自然科学版),2015,36(9):1232-1236. Zhao Hai, Zhang Ya, He Xuan, et al. Dynamic evolution analysis of the earthquake network based on the time-space influence domain[J].Journal of Northeastern University(Natural Science),2015,36(9):1232-1236. [19] 李光光,赵海,何璇,等.基于k-核解析的地震活动网络特征分析[J].地震学报,2015,37(2):239-248,370. Li Guangguang, Zhao Hai, He Xuan, et al. The characteristics of earthquake networks based on k-core decomposition[J].ActaSeismologica Sinica,2015,37(2):239-248,370. [20] Pastén D, Torres F, Toledo B A, et al. Non-universal critical exponents in earthquake complex networks[J]. Physica A Statistical Mechanics & Its Applications, 2017, 491:445-452. [21] Rezaei S, Moghaddasi H, Darooneh A H. Preferential attachment in evolutionary earthquake networks[J]. Physica A Statistical Mechanics and its Applications,2018,495:172-179. [22] Abe S, Suzuki N. Determination of the scale of coarse graining in earthquake network[J]. Epl, 2012, 87(4):48008-48012. [23] 刘丽芳,李志海,蒋长胜.云南地区地震目录最小完整性震级研究[J].地震研究,2012,35(4):491-499. Liu Lifang, Li Zhihai, Jiang Changsheng. Research on minimum magnitude of completeness for earthquake catalogue in Yunnan region[J].Journal of Seismological Research,2012,35(4):491-499. [24] 龙锋,闻学泽,倪四道.区域最小完整性震级时空分布的确定──以龙门山断裂带为例[J].地震,2009,29(3):27-36. Long Feng, Wen Xueze, Ni Sidao. Determination of temporal-spatial distribution of the regional minimum magnitudes of completeness:application to the Longmenshanfaultzone[J].Earthquake,2009,29(3):27-36. [25] Abe S, Suzuki N. Dynamical evolution of clustering in complex network of earthquakes[J]. European Physical Journal B, 2007, 59(1):93-97. [26] 孙玺菁, 司守奎. 复杂网络算法与应用[M]. 北京:国防工业出版社, 2015:55-59. [27] Ferreira D S R, Papa A, Menezes R. Small world picture of worldwide seismic events[J]. Physica A Statistical Mechanics & Its Applications, 2014, (408):170-180. [28] Abe S, Suzuki N. Complex earthquake networks: hierarchical organization and assortativemixing[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74(2):026113. [29] Zhang G Q, Zhang G Q, Yang Q F, et al. Evolution of the Internet and its cores[J]. New Journal of Physics, 2008, 10(12):123027. [30] 胡昌平, 陈果. 领域知识网络的层次结构与微观形态探证——基于k-core层次划分的共词分析方法[J]. 情报学报, 2014, 33(2):130-139. Hu Changing, Chen Guo. An exploration of hierarchical domain knowledge network and its micro-morphology based on Co-word analysiswith reliable relation [J].Journal of The China Society for Scientific and Technical Information, 2014, 33(2):130-139. [31] Seidman S B. Network structure and minimum degree [J]. Social Networks, 1983, 5(3):269-287. [32] Gaertler M,Patrignani M. Dynamic analysis of the autonomous system graph[C]// IPS 2004,International Workshop on Inter-domain Performance and Simulation.Budapest,Hungary,2004:13-24. [33] Gkantsidis C, Mihail M, Zegura E. Spectral analysis of internet topologies[C]// Twenty-Second Annual Joint Conference of the IEEE Computer and Communications,San Francisco, 2003:364-374. [34] Uczak T. Size and connectivity of the k-core of a random graph[J]. Discrete Mathematics,1991,91(1):61-68. [35] 郭世泽,陆哲明. 复杂网络基础理论[M].北京:科学出版社, 2012:45:48. [36] 张亮. 复杂网络增长模型及社区结构划分方法[D]. 大连:大连理工大学硕士论文, 2008. Zhang Liang. Complex network growth model and method of community structure division[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2008.