Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (3): 91-96    DOI: 10.13306/j.1672-3813.2017.03.009
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络理论的电力网络关键线路识别
傅杰, 邹艳丽, 谢蓉
广西师范大学电子工程学院,广西 桂林 541004
The Critical Lines Identification of the Power Grids Based on the Complex Network Theory
FU Jie, ZOU Yanli, XIE Rong
College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
全文: PDF(1007 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 从复杂网络理论角度出发,提出了一种基于网络凝聚度的电力网络关键线路评价方法。方法着重关注电力网络的全局状态,综合考虑电力网络中各节点之间的连通能力,以及网络中节点的数目,通过观察输电线路断开前后电力网络凝聚度的变化量,来衡量电力网络中各输电线路的重要程度。通过将研究的计算结果与文献中已有的基于网络效率的关键线路评价方案的结果进行对比,以及在拓扑结构和动力学角度上进行仿真验证,均说明了提出的关键线路衡量方法是合理且有效的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅杰
邹艳丽
谢蓉
关键词 复杂网络凝聚度电力网络关键线路拓扑结构动力学    
Abstract:Based on the complex network theory, this paper proposes a critical lines evaluation method for power network according to the cohesion degree of network. This method focuses on the overall state of the power network, the connectivity between nodes in the power network and the numbers of nodes in the network. It can measure the importance of each transmission line in power network by observing the change of cohesion degree of power network before and after transmission line breaking. Because of the comparison between the calculation results of this paper and the results of the existing critical lines evaluation schemes based on the network performance in the literature, the simulation on the topological structure and dynamics, the reasonable and effective of the method is proved.
Key wordscomplex network    degree of aggregation    power grids    critical lines identification    topological structure    dynamics
收稿日期: 2016-12-04      出版日期: 2019-01-10
ZTFLH:  TM711  
基金资助:国家自然科学基金(11562003);广西多源信息挖掘与安全重点实验室系统性研究课题基金(13A0203);广西研究生教育创新计划项目(YCSZ2014098)
通讯作者: 邹艳丽(1972),女,博士,教授,主要研究方向为非线性电路系统的混沌控制与同步、复杂网络的控制与同步。   
作者简介: 傅杰(1991),男,湖南岳阳人,硕士研究生,主研方向为复杂网络理论及其应用。
引用本文:   
傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
FU Jie, ZOU Yanli, XIE Rong. The Critical Lines Identification of the Power Grids Based on the Complex Network Theory. Complex Systems and Complexity Science, 2017, 14(3): 91-96.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.03.009      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I3/91
[1]Pagani G A, Marco A. From the grid to the smart grid, topologically[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 449: 160175.
[2]Bhangu N S, Singh R, Pahuja G L. Reliability centred maintenance in a thermal power plant: a case study[J]. International Journal of Productivity and Quality Management, 2011, 7(2): 209228.
[3]Park J W, Seol W C. Considerations for severe accident management under extended station blackout conditions in nuclear power plants[J]. Progress in Nuclear Energy, 2016, 88: 245256.
[4]Aguiar A S, Lamego Simoes Filho F F, Alvim A C M, et al. Station Blackout in unit 1 and analysis of the wind field in the region of Angra dos Reis[J]. Annals of Nuclear Energy, 2015, 78: 93103.
[5]Watanabe T, Ishigaki M, Hirano M. Analysis of BWR long-term station blackout accident using TRAC-BF1[J]. Annals of Nuclear Energy 2012, 49: 223226.
[6]陈增强, 谢征, 张青. 基于非负矩阵分解的复杂网络重构[J]. 复杂系统与复杂性科学, 2016, 13(3): 2632.
Chen Zengqiang, Xie Zheng, Zhang Qing. Complex network reconstruction based on non negative matrix factorization[J]. Complex Systems and Complexity Science, 2016, 13(3): 2632.
[7]张欣. 多层复杂网络理论研究进展:概念、理论和数据[J]. 复杂系统与复杂性科学, 2015, 12(2): 103107.
Zhang Xin. Research progress of multi layer complex network theory: concept, theory and data[J]. Complex Systems and Complexity Science, 2015, 12(2): 103107.
[8]巩长忠, 李飞燕. 不确定复杂网络的广义矩阵投影同步[J]. 复杂系统与复杂性科学, 2015, 12(3): 5360.
Gong Changzhong, Li Feiyan. Generalized matrix projective synchronization of uncertain complex networks[J]. Complex Systems and Comple-xity Science, 2015, 12(3): 5360.
[9]王海峰, 李旺, 顾国彪,等. 风力发电机自循环蒸发内冷系统稳定性的研究[J]. 物理学报, 2016, 65(3): 3845.
Wang Haifeng, Li Wang, Gu Guobiao, et al. Study on the stability of self circulation evaporative cooling system of wind turbine[J]. Physical Science Journal, 2016, 65(3): 3845.
[10] 杜江, 郭瑞鹏, 李传栋,等. 电力系统可靠性评估中的重要控制法[J]. 电力系统自动化, 2015, 39(5): 6974.
Du Jiang, Guo Ruipeng, Li Chuandong, et al. Important control method in reliability evaluation of power system[J]. Automation of Electric Power System, 2015, 39(5): 6974.
[11] 丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10): 2025.
Ding Ming, Hang Pingping. Vulnerability assessment of small world power grid with weighted topological model[J]. Chinese Journal of Electrical Engineering, 2008, 28(10): 2025.
[12] 王涛, 高成彬, 顾雪平,等. 基于功率介数的电网关键环节辨识[J]. 电网技术, 2014, 38(7): 19071913.
Wang Tao, Gao Chengbin, Gu Xueping, et al. Identification of key link in power system based on power dielectric[J]. Power System Technology, 2014, 38(7): 19071913.
[13] 魏震波, 刘俊勇, 朱国俊,等. 基于电网状态与结构的综合脆弱性评估模型[J]. 电力系统自动化, 2009, 33(8), 1114.
Wei Zhenbo, Liu Junyong, Zhu Guojun, et al. Integrated vulnerability assessment model based on state and structure of power network[J]. Automation of Electric Power System, 2009, 33(8), 1114.
[14] Karimi E, Ebrahimi A. Considering risk of cascading line outages in transmission expansion planning by benefit/cost analysis[J]. International Journal of Electrical Power and Energy Systems, 2016, 78: 480488.
[15] Ou Y M, Zhao L J, Pan Z Z, et al. Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 430: 4553.
[16] Ou Y M, Pan Z Z, Hong L, et al. Correlation analysis of different vulnerability metrics on power grids[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 396: 204211.
[17] 张富超, 谢成荣, 沈立新,等. 基于源流路径链和输电介数的电网关键线路辨识[J]. 电力系统保护与控制, 2015, 43(21): 712.
Zhang Fuchao, Xie Chengrong, Shen Lixin, et al. Identification of key lines in power system based on source and path chain and transmission medium number[J]. Power System Protection and Control, 2015, 43(21): 712.
[18] 鞠文云, 李银红. 基于最大流传输贡献度的电力网络关键线路和节点辨识[J]. 电力系统自动化, 2012, 36(9): 612.
Ju Wenyun, Li Yinhong. The key lines and nodes identification of power network based on the maximum transmission contribution degree[J]. Automation of Electric Power System, 2012, 36(9): 612.
[19] Crucitti P, Latora V, Marchiori M. Locating critical lines in high-voltage electrical power grids[J]. Fluctuation and Noise Letters, 2005, 5(2): 201208.
[20] Rohden M, Sorge A, Timme M, et al. Self-organized synchronization in decentralized power grids[J]. Physical Review Letters, 2012, 109(6): 064101.
[1] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[2] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[3] 肖琴, 罗帆. 机场外来物风险监管策略的演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 18-25.
[4] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[5] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
[6] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[7] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[8] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[9] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
[10] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[11] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[12] 郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
[13] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[14] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed