Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (3): 78-85    DOI: 10.13306/j.1672-3813.2020.03.008
  本期目录 | 过刊浏览 | 高级检索 |
基于冗余度的复杂网络抗毁性及节点重要度评估模型
王梓行1a, 姜大立1a, 漆磊1a, 陈星1b, 赵禹博2
1.陆军勤务学院 a.军事物流系;b.基础部,重庆 401311;
2.陆军装甲兵学院士官学院,长春 130137
Complex Network Invulnerability and Node Importance Evaluation Model Based on Redundancy
WANG Zihang1a, JIANG Dali1a, QI Lei1a, CHEN Xing1b, ZHAO Yubo2
1. a.Department of Military Logistics; b.Department of Fundamental Studies,Army Logistics University,Chongqing 401311,China;
2. Noncommissioned Officer School of Army Armored Force University,Changchun 130137, China
全文: PDF(1805 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了给复杂网络抗毁性的提高及重要节点的防护提供有效的决策依据,建立了基于冗余度的复杂网络抗毁性及节点重要度评估模型。首先,定义了复杂网络的冗余度,同时基于此对其抗毁性进行量化;然后利用冗余度的全局属性,通过节点删除法对节点重要度展开评估;最后利用真实网络进行仿真实验,结果表明该模型算法能为一定约束成本限制下高抗毁性网络的构造问题提供解决方案,同时对于较大规模网络中节点重要度的评估具有一定的有效性和优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梓行
姜大立
漆磊
陈星
赵禹博
关键词 复杂网络冗余度网络抗毁性节点重要度节点删除法    
Abstract:In order to provide effective decision-making basis for improvement of complex network invulnerability and protection of important nodes, this paper establishes a complex network invulnerability and node importance evaluation model based on redundancy. Firstly, the redundancy of complex networks is defined. At the same time, based on the redundancy, the invulnerability of the network is quantified. Then, this paper uses the global attribute of redundancy to evaluate the importance of each node in the network by means of node deletion. Finally, this paper uses actual networks for simulation experiments. The results show that the model and algorithm can provide a solution to the problem of high invulnerability network construction under some cost constraints, and at the same time they are effective and superior for evaluating the importance of nodes in larger networks.
Key wordscomplex network    redundancy    network invulnerability    node importance    node deletion method
收稿日期: 2019-12-03      出版日期: 2020-09-23
ZTFLH:  N949  
基金资助:国家自然科学基金(70871119);中国物流学会、中国物流与采购联合会面上研究课题计划(2019CSLKT3-108)
通讯作者: 姜大立(1967-),男,重庆人,博士,教授,主要研究方向为物流管理、军事物流、管理系统工程、人工智能。   
作者简介: 王梓行(1995-),男,四川内江人,硕士研究生,主要研究方向为物流工程、管理科学与工程、复杂网络等。
引用本文:   
王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
WANG Zihang, JIANG Dali, QI Lei, CHEN Xing, ZHAO Yubo. Complex Network Invulnerability and Node Importance Evaluation Model Based on Redundancy. Complex Systems and Complexity Science, 2020, 17(3): 78-85.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.03.008      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I3/78
[1] 吴俊,谭索怡,谭跃进,等.基于自然连通度的复杂网络抗毁性分析[J].复杂系统与复杂性科学,2014,11(1):77-86.
Wu Jun, Tan Suoyi, Tan Yuejin, et al. Analysis of invulnerability in complex networks based on natural connectivity[J]. Complex Systems and Complexity Science, 2014, 11(1): 77-86.
[2] 田田,吴俊,谭跃进.基于自然连通度的复杂网络抗毁性仿真优化研究[J].复杂系统与复杂性科学,2013,10(2):88-94.
Tian Tian, Wu Jun, Tan Yuejin. Simulation optimization for invulnerability of complex networks based on natural connectivity[J]. Complex Systems and Complexity Science, 2013, 10(2): 88-94.
[3] 蒋丰景.无标度网络建模与抗毁性研究[D].西安:西安电子科技大学,2014.
Jiang Fengjing. Research on scale-free networks modeling and invulnerability[D]. Xi'an: Xidian University, 2014.
[4] 王灿.无线传感器网络抗毁性测度模型及网络拓扑优化研究[D].上海:华东理工大学,2015.
Wang Can. The research on survivablity measure model and topology optimization of wireless sensor network[D]. Shanghai: East China University of Science and Technology, 2015.
[5] 姚杰.基于复杂网络理论的电力通信网节点重要性评估方法研究[D].北京:华北电力大学,2014.
Yao Jie. Research on node importance evaluation method of electric power communication network based on complex network theory[D]. Beijing: North China Electric Power University, 2014.
[6] 谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006(11):79-83+102.
Tan Yuejin, Wu Jun, Deng Hongzhong. Evaluation method for node importance based on node contraction in complex networks[J]. Systems Engineering—Theory & Practice, 2006(11): 79-83+102.
[7] 刘媛妮.复杂网络抗毁性建模优化及其评估技术研究[D].北京:北京邮电大学,2011.
Liu Yuanni. Invulnerability optimization and evaluation techniques of complex network[D]. Beijing: Beijing University of Posts and Telecommunications, 2011.
[8] 陈静,孙林夫.复杂网络中节点重要度评估[J].西南交通大学学报,2009,44(3):426-429.
Chen Jing, Sun Linfu. Evaluation of node importance in complex networks[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 426-429.
[9] 张喜平,李永树,刘刚,等.节点重要度贡献的复杂网络节点重要度评估方法[J].复杂系统与复杂性科学, 2014, 11(3): 26-32,49.
Zhang Xiping, Li Yongshu, Liu Gang, et al. Evaluation method of importance for nodes in complex networks based on importance contribution[J]. Complex Systems and Complexity Science, 2014, 11(3): 26-32,49.
[10] 阮逸润,老松杨,王竣德,等.基于领域相似度的复杂网络节点重要度评估算法[J].物理学报,2017,66(3):371-379.
Ruan Yirun, Lao Songyang, Wang Junde, et al. Node importance measurement based on neighborhood similarity in complex network[J]. Acta Physica Sinica, 2017, 66(3): 371-379.
[11] 宋琛,尹波,张贤坤.基于叠加随机游走的复杂网络节点重要度评估方法[J].信息工程大学学报,2016,17(6):730-734,759.
Song Chen, Yin Bo, Zhang Xiankun. Node evaluation method based on superposed random walk[J]. Journal of Information Engineering University, 2016, 17(6): 730-734,759.
[12] 董政呈,方彦军,田猛.相互依存网络抗毁性研究综述[J].复杂系统与复杂性科学,2017,14(3):30-44.
Dong Zhengcheng, Fang Yanjun, Tian Meng. Review on invulnerability of interdependent networks[J]. Complex Systems and Complexity Science, 2017, 14(3): 30-44.
[13] Wu J,Barahona M,Tan Y J,et al.Robustness of regular ring lattices based on natural connectivity[J].International Journal of Systems Science,2011,42(7):1085-1092.
[14] Zhang X K,Wu J,Tan Y J,et al.Structural robustness of weighted complex networks based on natural connectivity[J]. Chin Phys Lett,2013,30(10):108901.
[15] Cvetkovic'D M,Doob M,Sachs H.Spectra of Graphs[M].New York:Academic Press,1979.
[16] 郭强,殷冉冉,刘建国. 基于TOPSIS的时序网络节点重要性研究[J]. 电子科技大学学报, 2019, 48(2): 296-300.
Guo Qiang, Yin Ranran, Liu Jianguo. Node importance identification for temporal networks via the TOPSIS method[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 296-300.
[17] 邵鹏, 胡平. 复杂网络特殊用户对群体观点演化的影响[J]. 电子科技大学学报, 2019, 48(4): 604-612.
Shao Peng, Hu Ping. The influence mechanism of special members on opinion evolution of group members in complex network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(4): 604-612.
[18] Wang K, Liu S X, Yu H T, et al. Predicting missing links of complex network via effective common neighbors[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 432-439.
[19] 黄贤英, 杨林枫, 刘小洋, 等. 社交网络突发事件传播速率模型研究[J]. 电子科技大学学报, 2019, 48(3): 462-468.
Huang Xianying, Yang Linfeng, Liu Xiaoyang, et al. Research on the emergency events propagation rate model based on social network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 462-468.
[20] 迟钰雪,刘怡君.基于超网络的线上线下舆情演化模型研究[J].系统工程理论与实践,2019,39(1):259-272.
Chi Yuxue, Liu Yijun. Research on online and offline public opinion evolution model based on the theory of supernetwork[J]. Systems Engineering—Theory & Practice, 2019, 39(1): 259-272.
[21] Fei L G,Deng Y.A new method to identify influential nodes based on relative entropy[J]. Chaos,Solitons and Fractals, 2017,104:257-267.
[22] Zhang Z K,Zhang C X,Han X P,et al.Emergence of blind areas in information spreading[J].PLoS ONE, 2014, 9(4): e95785.
[23] Chen D B,Gao H,Lv L,et al.Identifying influential nodes in large-scale directed networks:the role of clustering[J].PLoS ONE,2013,8(10):e77455.
[1] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[2] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[3] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[4] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[5] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[6] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[7] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[8] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[9] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[10] 董晓娟, 安海岗, 董志良. 有色金属国际期货市场价格联动效应演化分析——以铜、铝、锌为例[J]. 复杂系统与复杂性科学, 2018, 15(4): 50-59.
[11] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
[12] 种鹏云, 尹惠. 基于复杂网络的危险品道路运输网络优化策略研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 56-65.
[13] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[14] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[15] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed