Abstract:To solve the problem of path tracking control for three wheeled robots with nonholonomic dynamics characteristics, a multi robot cooperative formation control strategy is proposed by using Backstepping method. Firstly, the formation problem of multi robot system which based on pilot following mode is transformed into the problem of tracking the virtual leader's trajectory by following robot, and then the differential equation of pose error of multi robot system kinematics is obtained; then, the Backstepping method is used to construct the robot cooperative formation control strategy of nonlinear system. Lyapunov function and other knowledge are applied to analyze the robot dynamic system. It is concluded that the multi robot system is stable and can realize formation control. Finally, we verify the availability of the formation method through simulation experiments.
于美妍, 杨洪勇, 孙玉娇. 基于Backstepping的三轮机器人编队控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 28-34.
YU Meiyan, YANG Hongyong, SUN Yujiao. Formation Control of Three Wheeled Robots Based on Backstepping. Complex Systems and Complexity Science, 2021, 18(3): 28-34.
[1] Yu J G. Average case constant factor time and distance optimal multi-robot path planning in well-connected environments [J]. Autonomous Robots, 2020, 44(5):469-483. [2] Burgard W, Moors M, Stachniss C, et al. Coordinated multi-robot exploration [J]. IEEE Transactions on Robotics, 2005, 21(3):376-386. [3] Howard A. Multi-robot simultaneous localization and mapping using particle filters [J]. International Journal of Robotics Research, 2006, 25(12):1243-1256. [4] Vig L, Adams J A. Multi-robot coalition formation[J]. IEEE Transactions on Robotics, 2006, 22(4):637-649. [5] Fazli P , Davoodi A , Mackworth A K . Multi-robot repeated area coverage[J]. Autonomous Robots, 2012, 34(4): 251-276. [6] 刘凡,李玉玲,杨洪勇.基于多源干扰的Leader-follower多智能体系统的一致性[J].信息与控制,2018, 47(1): 111-118,128. Liu Fan, Li Yuling, Yang Hongyong. Consistency of leader follower multi-agent system based on multi-source interference [J]. Information and Control, 2018,47(1): 111-118,128. [7] Wang Q, Wang Y, Zhang H. The formation control of multi-agent systems on a circle [J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):148-154. [8] Ji L H, Liao X F. Consensus problems of first order dynamic multi-agent systems with multiple time delays [J]. Chinese Phy-sics B, 2013, 22(4):50-55. [9] Wang M, Xie H F, Jin G M, et al. Event-triggered circle formation control for second-order-agent system [J]. Neurocomputing, 2018, 275:462-469. [10] 冯元珍. 多智能体:二阶系统组与混合阶情形的一致性问题研究[D]. 南京:南京理工大学, 2013. Feng Yuanzhen. Multi-agent: Study on the consistency of second-order systems and mixed order cases [D]. Nanjing: Nanjing University of Technology, 2013. [11] 肖秋云. 多智能体系统有限时间一致性若干问题研究[D]. 江苏:江南大学, 2015. Xiao Qiuyun. Research on some problems of finite time consistency of multi-agent system [D]. Jiangsu: Jiangnan University, 2015. [12] 陈罡, 孟静, 高晓丁, 等. 基于Backstepping方法的移动机器人路径跟踪问题研究[J]. 测控技术, 2016, 35(8): 52-56. Chen Gang , Meng Jing , Gao Xiaoding, et al. Path tracking of mobile robot based on backstepping method [J]. Measurement and Control Technology, 2016, 35(8): 52-56. [13] 刘国刚. 严格反馈混沌系统的Backstepping控制同步设计[J]. 计算机工程与应用, 2007, 43(23):200-202. Liu Guogang. Synchronization design of backstepping control for strictly feedback chaotic system [J]. Computer Engineering and Application, 2007, 43(23): 200-202. [14] Tong S C, Li Y, Li Y M, et al. Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems [J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2011, 41(6):1693-1704. [15] 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用, 2008, 25(5): 805-810. Gao Daoxiang, Sun Zengqi, Luo Xiong, et al. Fuzzy adaptive control of hypersonic vehicle based on backstepping [J]. Control Theory and Application, 2008, 25(5): 805-810. [16] Yao J, Jiao Z, Ma D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6285-6293. [17] Li X, Dong X, Li Q, et al. Event-triggered time-varying formation control for general linear multi-agent systems [J]. Journal of the Franklin Institute, 2018, 356(17):10179-10195. [18] Gong Y, Wen G, Peng Z, et al. Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(1):82-86. [19] Dong X W, Shi Z Y, Lu G, et al. Time-varying output formation control for high-order linear time-invariant swarm systems [J]. Information Sciences, 2015, 298:36-52. [20] 石晓航, 张庆杰, 吕俊伟. 一类复杂通信条件下高阶线性群系统编队控制[J]. 北京航空航天大学学报, 2020, 326(4):122-133. Shi Xaohang, Zhang Qingjie, Lü Junwei. Formation control of high-order linear group system under complex communication conditions [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 326(4):122-133. [21] 朱国栋,林辉,王琛.一类带有广义不确定性非线性系统的自适应模糊反演控制[J].科学技术与工程,2012,12(15):3620-3625. Zhu Guodong, Lin Hui, Wang Chen. Adaptive fuzzy backstepping control for a class of nonlinear systems with generalized uncertainties [J]. Science, Technology and Engineering, 2012,12(15):3620-3625. [22] 王钦钊, 程金勇, 李小龙. 基于BackStepping的全向机器人编队控制[J]. 兵器装备工程学报,2017,38(8):104-108. Wang Qinzhao, Cheng Jinyong, Li Xiaolong. Omnidirectional robot formation control based on backstepping [J]. Journal of Weapon Equipment Engineering, 2017, 38(8): 104-108.