Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 75-79    DOI: 10.13306/j.1672-3813.2021.03.011
  本期目录 | 过刊浏览 | 高级检索 |
带有丢包的分布式网络系统的滚动时域融合估计策略
范建明, 薛斌强
青岛大学自动化学院,山东 青岛 266071
Moving Horizon Fusion Estimation Strategy for Distributed Network Systems with Packet Loss
FAN Jianming, XUE Binqiang
School of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(1148 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对具有随机丢包分布式网络系统的状态估计问题,提出了一种带有信息融合策略的滚动时域估计方法。系统中每个节点能够通过网络与相邻节点传输数据,并在丢包时利用零阶保持器采用上一时刻数据来补偿测量值。基于滚动优化原理,传感器节点利用本地测量数据和相邻节点传来的数据将状态估计问题转化为固定窗口内的二次优化问题,并使用标量加权线性最小方差的方法对性能指标进行加权融合,从而得到一种新的估计方法。该方法保证了系统的一致性,并在保证准确度的情况下减少了计算时间。最后分析了估计器的稳定性并在仿真中与其它估计方法进行了比较,结果表明该方法具有更好的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范建明
薛斌强
关键词 随机丢包分布式网络系统状态估计滚动时域    
Abstract:A distributed robust moving horizon estimation method is proposed for distributed network systems with random packet loss. Each node in the system can transmit data over the network to its neighbors, and when a packet is lost it uses Zero-order hold data to compensate for the measurements. Based on moving horizon principle, sensor node transforms the state estimation problem into a quadratic optimization problem in a fixed window by using the local measurement data and the data from the adjacent nodes, the performance index is fused with the method of scalar weighted linear minimum variance. The method guarantees the consistency of the system and reduces the calculation time while the accuracy of the results is guaranteed. Finally, the stability of the estimator is analyzed and compared with other estimation methods in simulation. The results show that this method has better effect.
Key wordsrandom packet loss    distributed networked systems    state estimation    moving horizon estimation
收稿日期: 2020-11-13      出版日期: 2021-06-18
ZTFLH:  TP273  
基金资助:国家自然科学基金青年项目(61603205);中国博士后基金项目(2017M612205);青岛市博士后应用项目(2016022)
作者简介: 范建明(1995-),男,山东潍坊人,硕士研究生,主要研究方向为滚动时域状态估计。
引用本文:   
范建明, 薛斌强. 带有丢包的分布式网络系统的滚动时域融合估计策略[J]. 复杂系统与复杂性科学, 2021, 18(3): 75-79.
FAN Jianming, XUE Binqiang. Moving Horizon Fusion Estimation Strategy for Distributed Network Systems with Packet Loss. Complex Systems and Complexity Science, 2021, 18(3): 75-79.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.011      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/75
[1] Sun S L. Multi-sensor optimal information fusion Kalman filter with application[J]. Aerospace Science and Technology, 2004, 8(1): 57-62.
[2] Battistelli G. Distributed moving-horizon estimation with arrival-cost consensus[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3316-3323.
[3] Carli R, Chiuso A, Schenato L. Distributed Kalman filtering based on consensus strategies[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(4): 622-633.
[4] 孙书利. 具有一步随机滞后和多丢包的网络系统的最优线性估计[J]. 自动化学报, 2012, 38(3): 349-356.
Sun Shuli. Optimal linear estimation for networked systems with one-step random delays and multiple packet dropouts[J]. Acta Automatica Sinica, 2012, 38(3): 349-356.
[5] 张进飞,薛斌强.基于滚动时域随机丢包的网络化系统状态估计研究[J].电子设计工程, 2020, 28(6): 121-124.
Zhang Jinfei,Xue Binqiang.Design of state estimation of networked systems based on rolling time domain random packet loss[J]. Electronic Design Engineering, 2020, 28(6): 121-124.
[6] Fan J M, Xue B Q. Moving horizon estimation for uncertain networked control systems with packet loss[DB/OL]. [2020-10-01]. http://www.x-mol.com/paper/1279965233376051200.
[7] Battistelli G. Distributed moving-horizon estimation with arrival-cost consensus[J]. IEEE Transactions on Automatic Control, 2018, 64(8): 3316-3323.
[8] 焦志强,李卫华,王鹏.基于量测补偿的多传感器分布式滚动时域估计[J].系统工程与电子技术,2017, 39(5): 984-990.
Jiao Zhiqiang, Li Weihua, Wang Peng. Distributed moving horizon estimation for multi-sensors system based on measurements compensation[J]. Systems Engineering and Electronics, 2017, 39(5): 984-990.
[9] 孙书利,邓自立.多传感器线性最小方差最优信息融合估计准则[J].科学技术与工程, 2004, 4(5): 334-336.
Sun Shuli, Deng Zili. Linear minimum variance optimal information fusion estimation criterion for multi-sensor systems[J]. Science Technology and Engineering, 2004, 4(5): 334-336.
[10] Rao C V, Rawlings J B, Lee J H. Constrained linear state estimation—a moving horizon approach[J]. Automatica, 2001, 37(10): 1619-1628.
[11] Farina M, Ferrari-Trecate G, Scattolini R. Distributed moving horizon estimation for nonlinear constrained systems[J]. International Journal of Robust and Nonlinear Control, 2012, 22(2): 123-143.
[1] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[2] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[3] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[4] 王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 77-84.
[5] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[6] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[7] 成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
[8] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[9] 方荣东, 王银河, 汤晓. 一类具有异维节点的复杂动态网络外同步控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed