Abstract:Social recommendation algorithm based on social network is a popular method in recommendation system at present. However, there are many relationships among users in real social networks, and each relationship has different effects on recommendation. Therefore, the introduction of a social relationship in recommendation will inevitably affect the accuracy of recommendation results. In this paper, based on the multi-subnet composited complex network model, a multi-relationship composited network is constructed on the user-item bipartite graph, and a mass diffusion recommendation algorithm based on multi-relationship composited network is proposed. The experimental results on the real datasets Epinions and FilmTrust show that the recommendation algorithm with two kinds of social relationships is better than the recommendation algorithm with one kind of social relationship and traditional mass diffusion algorithm in the accuracy of recommendation.
[1]Bawden D, Holtham C, Courtney N. Perspectives on information overload [J]. Aslib Proceedings, 2013, 51(8):249255. [2]Hwang M I, Lin J W. Information dimension, information overload and decision quality [J]. Journal of Information Science, 1999, 25(3): 213218. [3]Edmunds A, Morris A. The problem of information overload in business organisations: a review of the literature [J]. International Journal of Information Management, 2000, 20(1):1728. [4]Eppler M J, Mengis J. The Concept of information overload: a review of literature from organization science, accounting, marketing, MIS, and related disciplines [J]. The Information Society, 2004, 20(5):325344. [5]Lee B K, Lee W N. The effect of information overload on consumer choice quality in an on-line environment[J]. Psychology & Marketing, 2010, 21(3):159183. [6]Lü L, Medo M, Chi H Y, et al. Recommender systems [J]. Physics Reports, 2012, 519(1):149. [7]Guo Q, Song W, Hou L, et al. Effect of the time window on the heat-conduction information filtering medel [J]. Physica A: Statistical Mechanics and Its Applications, 2014, 401(5):1521. [8]陈志敏, 李志强. 基于用户特征和项目属性的协同过滤推荐算法[J]. 计算机应用, 2011, 31(7):17481750. Chen Zhimin, Li Zhiqiang. Collaborative filtering recommendation algorithm based on user characteristics and item attributes[J]. Journal of Computer Applications, 2011, 31(7):17481750. [9]Zhang Y M, Wang L, Cao H H, et al. Recommendation algorithm based on user-interest-item tripartite graph[J]. Pattern Recognition and Artificial Intelligent, 2015, 28(10):913921. [10] Herlocker J L, Konstan J A, Terveen L G. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 553. [11] Pazzani M J. A framework for collaborative, content-based and demographic filtering[J]. Artificial intelligence review, 1999, 13(5): 393408. [12] 郭宁宁, 王宝亮, 侯永宏,等. 融合社交网络特征的协同过滤推荐算法[J]. 计算机科学与探索, 2018,12(2):208217. Guo Ningning, Wang Baoliang, Hou Yonghong, et al. Collaborative Filtering Recommendation Algorithm Based on Characteristics of Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2018,12(2):208217. [13] 周志华, 王珏. 机器学习及其应用[M]. 北京:清华大学出版社, 2007. [14] 王荣洋,鞠久鹏,李寿山,等.基于CRFs的评价对象抽取特征研究[J].中文信息学报,2012,26(2):5661. Wang Rongyang, Ju Jiupeng, Li Shoushan, et al. Feature engineering for CRFs based opinion target extraction [J]. Journal of Chinese Information Processing,2012,26(2):5661. [15] 郭强, 宋文君, 胡兆龙,等. 基于流行度的非平衡物质扩散推荐算法[J]. 计算机应用, 2015, 35(12):35023505. Guo Qiang, Song Wenjun, Hu Zhaolong, et al. Non-equilibrium mass diffusion recommendation algorithm based on popularity [J]. Journal of Computer Applications, 2015, 35(12):35023505. [16] 胡吉明, 林鑫. 基于用户资源词汇三部图的社会化推荐算法设计与实现[J]. 情报理论与实践, 2016,39(3):130134. Hu Jiming, Lin Xin. Design and implementation of recommendation algorithm based on user-socialized resource-vocabulary three-part graph [J]. Information studies: Theory & Application,2016,39(3):130134. [17] Zhou T, Ren J,Medo M, et al.Bipartite network projection and personal recommendation [J]. Physical Review E, 2007, 76(4):046115. [18] Watts D, Strogatz S. Collective dynamics of small-world networks[J]. Nature, 1998, 393 (6684): 440442. [19] Barabási A L, Bonabeau E. Scale-free networks [J]. Scientific American, 2003, 288(5):60. [20] 隋毅. 多子网复合复杂网络模型及其相关性质的研究[D]. 青岛:青岛大学, 2012. Sui Yi. Research on multi-subnet composited complex network and its related properties [D]. Qingdao: Qingdao University, 2012. [21] 邵峰晶, 孙仁诚, 李淑静,等. 多子网复合复杂网络及其运算研究[J]. 复杂系统与复杂性科学, 2012,7(4):2025. Shao Fengjing, Sun Rencheng, Li Shujing. Research of multi-subnet composited complex network and its operation [J]. Complex Systems and Complexity Science, 2012, 7(4): 2025. [22] 隋毅, 邵峰晶, 孙仁诚,等. 基于向量空间的多子网复合复杂网络模型动态组网运算的形式描述 [J]. 软件学报, 2015, 26(8): 20072019. Sui Yi, Shao Fengjing, Sun Rencheng, et al. Formalized descriptions of dynamic reorganizations of multi-subnet composited complex network based on vector space [J]. Journal of Software, 2015, 26(8): 20072019. [23] 宾晟, 孙更新. 基于多子网复合复杂网络模型的多关系社交网络重要节点发现算法 [J]. 南京大学学报(自然科学), 2017, 53(2): 378385. Bin Sheng, Sun Gengxin. Important node detection algorithm for multiple relationships online social network based on multi-subnet composited complex network model [J]. Journal of Nanjing University (Natural Sciences), 2017, 53(2): 378385. [24] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2):163175. Zhu Yuxiao, Lv Linyuan. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China.,2012,41(2):163175. [25] Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J].Proceedings of the National Academy of Sciences,2010,107( 10):45114515. [26] Yang X, Yang G, Yong L, et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014, 41(5):110.