Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (3): 75-84    DOI: 10.13306/j.1672-3813.2017.03.007
  本期目录 | 过刊浏览 | 高级检索 |
微博信息扩散的空间分析
李沧海, 许益贴, 罗春海, 胡海波
华东理工大学管理科学与工程系,上海 200237
Spatial Analysis of Microblog Information Diffusion
LI Canghai, XU Yitie, LUO Chunhai, HU Haibo
Department of Management Science and Engineering, East China University of Science andTechnology, Shanghai 200237, China
全文: PDF(1717 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为揭示信息扩散的空间特征,利用新浪微博数据,研究了中国地级市间的微博信息扩散,并利用重力模型,研究了影响城际信息扩散的因素。研究表明,少数一二线城市呈现信息寡占型,主导微博内容的输出和扩散。对城际信息交互模型的分析发现,用户数在很大程度上影响了城际信息扩散,城市总GDP也可预测城际信息交互,空间距离则不再发挥作用,微博中的信息扩散打破了物理距离的限制。该研究揭示了线上社交网络与线下物理空间的映射关系以及社交媒体中信息的城际扩散特征,可为空间位置相关的信息发布和网络舆情监控提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李沧海
许益贴
罗春海
胡海波
关键词 社交网络城际网络信息扩散重力模型    
Abstract:To reveal the spatial characteristics of information diffusion, this paper studies the microblog information diffusion among China’s prefecture-level cities utilizing Sina microblog data, and studies the factors influencing the intercity information diffusion using gravity model. We find that a few first and second-tier cities show information monopoly and dominate the output and diffusion of microblog content. The analysis on intercity information interaction models shows that the number of users affects the intercity information diffusion to a large extent, the total GDP of cities can also predict intercity information interaction, and space distance no longer plays a part. The information diffusion in microblog breaks the limit of spatial distance. This study reveals the mapping between online social networks and offline physical space, and the intercity diffusion characteristics of information in social media, which can provide reference for spatial location-related information distribution and online public opinion monitoring.
Key wordssocial network    intercity network    information diffusion    gravity model
收稿日期: 2017-03-21      出版日期: 2019-01-10
ZTFLH:  N94  
基金资助:国家自然科学基金(61473119);中央高校基本科研业务费专项资金(WN1524301)
通讯作者: 胡海波(1980),男,山东莱西人,博士,副教授,主要研究方向为社交网络与社会化媒体,E-mail:hbhu@ecust.edu.cn。   
作者简介: 李沧海(1993),女,甘肃武威人,硕士研究生,主要研究方向为社会化媒体。
引用本文:   
李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
LI Canghai, XU Yitie, LUO Chunhai, HU Haibo. Spatial Analysis of Microblog Information Diffusion. Complex Systems and Complexity Science, 2017, 14(3): 75-84.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.03.007      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I3/75
[1]胡海波, 王科, 徐玲, 等. 基于复杂网络理论的在线社会网络分析[J]. 复杂系统与复杂性科学, 2008, 5(2): 114.
Hu Haibo, Wang Ke, Xu Ling, et al. Analysis of online social networks based on complex network theory[J]. Complex Systems and Complexity Science, 2008, 5(2): 114.
[2]Hu H, Wang X. Disassortative mixing in online social networks[J]. EPL, 2009, 86: 18003.
[3]Lai G, Wong O. The tie effect on information dissemination: the spread of a commercial rumor in Hong Kong[J]. Social Networks, 2002, 24(1):4975.
[4]Liu Y, Wang B, Wu B, et al.Characterizing super-spreading in microblog: an epidemic-based information propagation model[J]. Physica A, 2016, 463:202218.
[5]Aral S,Walker D. Identifying influential and susceptible members of social networks[J]. Nature, 2010, 466(7307):761764.
[6]Dubois E, Gaffney D. The multiple facets of influence: identifying political influentials and opinion leaders on Twitter[J]. Am Behav Sci, 2014,58(10): 12601277.
[7]Goel S, Anderson A, Hofman J, et al. The structural virality of online diffusion[J]. Manage Sci, 2016, 62(1): 180196.
[8]刘红丽, 黄雅丽, 罗春海, 等. 基于用户行为的微博网络信息扩散模型[J]. 物理学报, 2016, 65(15): 158901.
Liu Hongli, Huang Yali, Luo Chunhai, et al. Modeling information diffusion on microblog networks based on users’ behaviors[J]. Acta Phys Sin, 2016,65(15): 158901.
[9]许小可, 胡海波,张伦,等. 社交网络上的计算传播学[M]. 北京: 高等教育出版社, 2015.
[10] Scellato S, Noulas A, Lambiotte R, et al. Socio-spatial properties of online location-based social networks[C]// Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Palo Alto, CA: The AAAI Press, 2011: 329336.
[11] Scellato S, Mascolo C, Musolesi M, et al. Distance matters: geo-social metrics for online social networks[C]// Proceedings of the 3rd Conference on Online Social Networks. Berkeley, CA, 2010.
[12] Lengyel B, Varga A, Ságvári B, et al. Geographies of an online social network[J]. PLoS One, 2015, 10(9): e0137248.
[13] Leskovec J, Horvitz E. Planetary-scale views on a large instant-messaging network[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press, 2008: 915924.
[14] Takhteyev Y, Gruzd A, Wellman B. Geography of Twitter networks[J]. Social Networks, 2012, 34: 7381.
[15] Levy M, Goldenberg J. The gravitational law of social interaction[J]. Physica A, 2014, 393: 418426.
[16] KringsG, Calabrese F, Ratti C, et al. Urban gravity: a model for inter-city telecommunication flows[J]. J Stat Mech, 2009, (7): L07003.
[17] Kang C, Zhang Y, Ma X, et al. Inferring properties and revealing geographical impacts of intercity mobile communication network of China using a subnet data set[J].Int J Geogr Inf Sci, 2013, 27(3): 431448.
[18] 卫健炯,胡海波.在线社会网络的形成机制——基于跨学科的视角[J].复杂系统与复杂性科学,2015,12(4):1424.
Wei Jianjiong, Hu Haibo.The underlyingmechanismsdrivingtheformationofonlinesocialnetworks-Interdisciplinaryperspective[J]. Complex Systems and Complexity Science,2015, 12(4): 1424.
[19] Hu H, Wang X. Unified index to quantifying heterogeneity of complex networks[J]. Physica A, 2008, 387: 37693780.
[20] González-BailónS, Borge-HolthoeferJ, Moreno Y. Broadcasters and hidden influentials in online protest diffusion[J]. Am Behav Sci, 2013, 57(7): 943965.
[21] ZipfGK. The P1P2/D hypothesis: on the intercity movement of persons[J]. Am Sociol Rev, 1946, 11: 677686.
[22] Simini F, González M C, Maritan A, et al. A universal model for mobility and migration patterns[J]. Nature, 2012, 484: 96100.
[23] Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. PLoS One, 2014, 9(1): e86026.
[24] van Bergeijk P A G, Brakman S. The gravity model in international trade: advances and applications[J]. Steven Brakman, 2010,19(5):979981.
[1] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed