Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 47-57    DOI: 10.13306/j.1672-3813.2016.03.007
  本期目录 | 过刊浏览 | 高级检索 |
异质阈值决策规则下的复杂网络扩散
肖宇1, 韩景倜2
1.上海对外经贸大学商务信息学院,上海 201620;
2.上海财经大学 a.信息管理与工程学院,b.实验中心,上海 200433
Modeling Heterogenous Threshold Rule Based Innovation Diffusion
XIAO Yu1, HAN Jingti2
1. School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China;
2. a. School of Information Management and Engeneering, b. Experimental Center, Shanghai University of Finance and Economics, Shanghai 200433, China
全文: PDF(1221 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于异质阈值模型和平均场理论刻画了社会网络扩散,分析了邻居效应、阈值分布和网络度分布对扩散的影响。结果表明:邻居效应或阈值分布均值的减小将加速扩散及增大均衡状态值,阈值分布方差的减小将减缓初始扩散,且满足一定条件下,将加速扩散收尾过程;邻居效应较弱时,度分布异质性的增加将加速初始扩散,反之亦然;邻居效应和阈值分布满足一定条件时,扩散初始速度将呈现出超指数增长;邻居效应、阈值分布或度分布的变化均可使扩散均衡状态值发生跳跃式增长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖宇
韩景倜
关键词 创新扩散社会网络邻居效应社会影响扩散影响率    
Abstract:Based on heterogenous threshold model and mean-field theory, we analyse the impact of neighbor effect, threshold distribution and degree distribution on the diffusion process and equilibrium. The result shows that the decrease in neighbor effect or the mean of threshold distribution would speed up the diffusion process and increase the equilibrium value. Besides, the decrease in the variance of threshold distribution would slow down the initial diffusion process, and would also speed up the end-stage diffusion when some conditions are given; if the neighbor effect is low, the increase in the heterogeneity of degree distribution would speed up the initial diffusion stage; the initial diffusion would experience a super-exponential increase stage when a certain relationship between the neighbor effect and the threshold distribution is met; the change in neighbor effect, threshold distribution or degree distribution may lead to a jump increase of the equilibrium value.
Key wordsinnovation diffusion    social network    neighbor effect    social influence    diffusion-Influence rate
收稿日期: 2014-11-17      出版日期: 2025-02-25
ZTFLH:  F244  
基金资助:国家自然科学基金(71271126);教育部博士点专项科研基金(20120078110002);上海财经大学第六批研究生科研创新基金(CXJJ-2012-427);教育部人文社会科学研究规划基金(15YJCZH201);上海市教育委员会科研创新项目(14YZ134)
通讯作者: 韩景倜(1959-),男,陕西西安人,博士,教授,主要研究方向为复杂系统理论、应急管理。   
作者简介: 肖宇(1986-),男,江西宁都人,博士,讲师,主要研究方向为创新扩散和社会网络。
引用本文:   
肖宇, 韩景倜. 异质阈值决策规则下的复杂网络扩散[J]. 复杂系统与复杂性科学, 2016, 13(3): 47-57.
XIAO Yu, HAN Jingti. Modeling Heterogenous Threshold Rule Based Innovation Diffusion[J]. Complex Systems and Complexity Science, 2016, 13(3): 47-57.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.007      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/47
[1] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J].Physics Reports, 2006, 424 (4/5): 175-308.
[2] Newman M E J. The structure and function of complex networks[J].SIAM Review, 2003, 45(2): 167-256.
[3] Centola D.The spread of Behavior in an online social network experiment[J].Science, 2010, 329: 1194-1197.
[4] 赵正龙, 陈忠, 孙武军, 等. 具有差异化选择特征的复杂社会网络扩散研究[J].管理科学学报, 2010, 13 (3): 38-48.
Zhao ZhengLong, Chen Zhong, Sun WuJun, et al. Diffusion with property of differential choice in complex social network[J].Journal of Management Sciences in China, 2010, 13(3):38-48.
[5] Duan W, Chen Z, Liu Z. Efficient target strategies for contagion in scale-free networks[J].Physical Review E, 2005, 72(2): 26-133.
[6] 段文奇, 陈忠. 网络效应新产品成功的关键: 产品质量还是安装基础? [J].系统工程理论与实践, 2007, 23(7): 144-148.
Duan WenQi, Chen Zhong. Key factor to drive success of new product with network effects: product quality or installed base? [J].System Engineering Theory&Practice, 2007, 23(7): 144-148.
[7] Choi H, Kim S H, Lee J. Role of network structure and network effects in diffusion of innovations[J].Industrial Marketing Management, 2010, 39(1): 170-177.
[8] Ohara K, Kazumi S, Masahiro K, et al. Effect of in/out degree correlation on influence degree of two contrasting in formation diffusion models[C].SBP 2012, LNCS 7227: 131-138.
[9] Lopez-Pintado D. Diffusion in complex social networks[J].Games and Economics Behavior, 2008, 62(2): 573-590.
[10] Valente T W. Social network thresholds in the diffusion of innovations[J].Social Networks, 1996, 18: 69-89.
[11] Young H P. Innovation diffusion in heterogeneous populations:contagion,social influence,and social learning[J].American Economic Review, 2009, 99(5): 1898-1924.
[12] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J].Physical review E, 2007, 75, 056103.
[13] Granovetter M. Threshold models of collective behavior[J].American Journal of Sociology, 1978, 83: 1420-1443.
[14] Granovetter M, Song R. Threshold models of interpersonal effects in consumer demand[J].Journal of Economic Behavior and Organization, 1986, 7: 83-89.
[15] Macy M W. Chains of cooperation:threshold effects in collective action[J].American Sociology Review, 1991, 56: 730-737.
[16] Lopez-Pintado D. Influence networks[J].Games and Economics Behavior, 2012, 75: 776-787.
[17] Pastor-Satorras R,Vespignani A. Epidemic dynamics and endemic states in complex networks[J].Physical Review Letters, 2000, 86(24): 3200-3203.
[18] Dodds P S, Watts D J. Universal behavior in a generalized model of contagion[J].Pyhsical Review Letters, 2004, 92(21), 218701.
[19] Jackson M O,Yariv L. Diffusion of behavior and equilibrium properties in network games[J].American Economic Review, 2007, 97(2): 92-98.
[20] Yann B. Anti-coordination and social interactions[J].Games and Economic Behavior, 2007, 58: 30-49.
[1] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[2] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[3] 李培哲, 菅利荣. 网络结构、知识基础与企业创新绩效[J]. 复杂系统与复杂性科学, 2022, 19(2): 31-38.
[4] 孙奕菲, 姚若侠, 焦李成. 基于Memetic算法和关联学习的社会网络聚类分析[J]. 复杂系统与复杂性科学, 2017, 14(2): 89-96.
[5] 范如国, 崔迎迎, 张应青. 多元偏好、社团结构与网络合作涌现仿真研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 26-34.
[6] 周静, 袁瑛, 涂平. 中国电影圈主要导演和演员合作网络的结构特征分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed