Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 35-40    DOI: 10.13306/j.1672-3813.2016.04.005
  本期目录 | 过刊浏览 | 高级检索 |
相振子网络中集聚系数和度分布对复杂度的影响
李珏璇1,2, 赵明1
1.广西师范大学物理科学与技术学院,广西 桂林 541004;
2.广西科技师范学院机械与电气工程学院,广西 柳州 545004
Effects of Clustering Coefficient and Degree Distribution on Complexity in Oscillator Networks
LI Juexuan1,2, ZHAO Ming1
1. College of Physics and Technology, Guangxi Normal University, Guilin 541004, China;
2. Department of Physics and Information Science, Liuzhou Teachers College, Liuzhou 545004, China
全文: PDF(949 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 分析了复杂网络的集聚系数和度分布的异质性这两个重要的描述复杂网络结构特点的特征量对复杂度的影响。研究发现,增大集聚系数能增大复杂度的最大值以及增大复杂度钟形曲线的宽度,而增大度分布的异质性不能增大复杂度的最大值却可以明显增大复杂度在上升段和下降段的取值。对于小世界网络集聚系数对复杂度的影响更明显,而对于无标度网络,度分布的异质性更能显著的改变复杂度的取值。进一步加深了人们对描述网络部分同步状态的复杂度的认识,为设计合理的网络结构提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李珏璇
赵明
关键词 复杂度集聚系数度分布    
Abstract:Complexity is defined to describe the partial synchronization state in complex networks, which is sensitive to the network structure, however, how the structure affects the complexity is still unclear. Clustering coefficient and degree distribution are two typical parameters in complex networks. In this paper, the effects of these two parameters on complexity are studied. After careful study it is found that increasing clustering coefficient would increase the maximal complexity and broaden the width of the complexity curves, and increasing the heterogeneity of the degree distribution will increase the value of rising and falling part of complexity curve but have no effect on the maximal complexity. Furthermore, complexity is sensitive to clustering coefficient in small-world networks and sensitive to heterogeneity of degree distribution in scale-free networks. Our work deepens the knowledge of complexity, and provide useful theory to design complex network structure.
Key wordscomplexity    clustering coefficient    degree distribution
收稿日期: 2015-03-12      出版日期: 2025-02-25
ZTFLH:  TP79  
基金资助:国家自然科学基金(11165003);广西自然科学基金(2015GXNSFGA139009);广西高校优秀人才资助计划项目
作者简介: 李珏璇(1964-),女,广西武宣人,高级实验师,主要研究方向为普通物理实验。
引用本文:   
李珏璇, 赵明,. 相振子网络中集聚系数和度分布对复杂度的影响[J]. 复杂系统与复杂性科学, 2016, 13(4): 35-40.
LI Juexuan, ZHAO Ming. Effects of Clustering Coefficient and Degree Distribution on Complexity in Oscillator Networks[J]. Complex Systems and Complexity Science, 2016, 13(4): 35-40.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.005      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/35
[1] Watts D J, Strogatz S H. Collective dy-namics of “small-world” networks[J].Nature, 1998,393:440-442.
[2] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science,1999, 286: 509-512.
[3] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks[J].Nature, 2010, 464 (7291): 1025-1028.
[4] Petter H, Jari S. Temporal networks[J].Physics Reports,2012, 519: 97-125.
[5] Barahona M,Pecora L M. Synchronization in small-world systems[J].Phys Rev Lett, 2002,89(5):054101.
[6] Nishikawa T, Motter A E, Lai Y C, et al. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize?[J].Phys Rev Lett,2003, 91(1): 014101.
[7] Arenas A, Diaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J].Phys Rep, 2008,469(3):93-153.
[8] Arenas A, Diaz-Guilera A, Perez-Vicente C J. Synchronization processes in complex networks[J].Physica D, 2006,224:27-34.
[9] Gomez-Gardenes J , Moreno Y , Arenas A. Paths to synchronization on complex networks[J].Phys Rev Lett,2007, 98(3):034101.
[10] Chen J, Lu J A, Wu X, et al. Generalized synchronization of complex dynamical networks via impulsive control[J].Chaos,2009,19(4):043119.
[11] Liu H, Chen J , Lu J A , et al. Generalized synchronization in complex dynamical networks via adaptive couplings[J].Physica A,2010, 389:1759-1770.
[12] Zhang J , Zhou C , Xu X , et al. Mapping from structure to dynamics: a unified view of dynamical processes on networks[J].Phys Rev E,2010, 82(2):026116.
[13] Zhao M , Zhou C , Chen Y , et al. Complexity versus modularity and heterogeneity in oscillatory networks: combining segregation and integration in neural systems[J].Phys Rev E,2010, 82(4):046225.
[14] Stam C J. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field[J].Clin Neurophysiol 116:2266.
[15] Scannell J W, Burns G A P C, Hilgetag C C, The connectional organization of the cortico-thalamic system of the cat[J].Cereb Cortex,1999, 9:277-299.
[16] White J G, Southgate E, Thompson J N, et al. The structure of the nervous system of the nematode Caenorhabditis elegans[J].Philosphical Transactions of the Royal Society B Biological Sciences,2011,118(314):1-340.
[17] Dorogovtsev S N , Mendes J F F , Samukhin A N. Structure of growing networks with preferential linking[J].Phys Rev Lett,2000, 85:4633-4636.
[18] Krapivsky P L , Redner S. Organization of growing random networks[J].Phys Rev E,2001, 63(6):066123.
[19] Maslov S , Sneppen K. Specificity and stability in topology of protein networks[J].Science,2002, 296:910-913.
[20] Kim B J. Coherent potential approximation and projection operators for interacting electrons[J].Phys Rev E,2004, 69(4):045101.
[1] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[2] 贾珺, 胡晓峰, 贺筱媛. 网络结构特征与链路预测算法关系研究[J]. 复杂系统与复杂性科学, 2017, 14(1): 28-37.
[3] 任成磊, 韩定定, 蒲鹏, 张嘉诚. 利用堆数据结构实现邻域重叠社团结构挖掘[J]. 复杂系统与复杂性科学, 2016, 13(1): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed