Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 62-67    DOI: 10.13306/j.1672-3813.2016.04.009
  本期目录 | 过刊浏览 | 高级检索 |
网络化分布式协作系统的最大同步
王付永, 杨洪勇
鲁东大学信息与电气工程学院,山东 烟台 264025
Maximum Synchronization of Networked Systems with Distributed Collaboration
WANG Fuyong, YANG Hongyong
School of Information and Electrical Engineering, Ludong University, Yantai 264025,China
全文: PDF(682 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于网络化系统的拓扑结构特性,研究了分布式系统的最大同步问题。提出了一种应用个体局部信息的线性分布式控制协议。运用现代控制理论、代数图论和SIA等理论工具,对控制算法进行了稳定性分析,得到了网络化系统的最大同步收敛条件。最后应用仿真实验验证了所得结论的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王付永
杨洪勇
关键词 网络化系统最大同步分布式控制有向图联合连通    
Abstract:Based on the topology feature of networked systems, maximum synchronization of distributed systems is studied. A distributed control protocol with individual′s local information is proposed. By using theoretical tools of modern control theory, algebraic graph theory and SIA, the stability of control algorithm is analyzed. The convergence condition of the maximum synchronization for networked systems is achieved. Finally, simulation examples are given to verify the correctness of the conclusion.
Key wordsnetworked systems    maximum synchronization    distributed control protocol    directed graph    jointly-connected
收稿日期: 2015-01-28      出版日期: 2025-02-25
ZTFLH:  TP27  
基金资助:国家自然科学基金(61273152,61304052,51407088);山东省自然科学基金(BS2015DX018)
通讯作者: 杨洪勇(1967-),男,山东德州人,博士,教授,主要研究领域为网络应用技术、多智能体编队控制、复杂网络控制、非线性系统控制等。   
作者简介: 王付永(1990-),男,山东济南人,硕士研究生,主要研究领域为复杂网络、多智能体编队控制。
引用本文:   
王付永, 杨洪勇. 网络化分布式协作系统的最大同步[J]. 复杂系统与复杂性科学, 2016, 13(4): 62-67.
WANG Fuyong, YANG Hongyong. Maximum Synchronization of Networked Systems with Distributed Collaboration[J]. Complex Systems and Complexity Science, 2016, 13(4): 62-67.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.009      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/62
[1] Dai P P, Liu C L, Liu F. Consensus problem of heterogeneous multi-agent systems with time delay under fixed and switching topologies[J].International Journal of Automation and Computing, 2014, 11(3): 340-346.
[2] Diao M, Duan Z S, Wen G H. Consensus tracking of linear multi-agent systems under networked observability conditions[J].International Journal of Control, 2014, 87(8): 1478-1486.
[3] Jiang Y L, Liu J C, Wang S Q. Cooperative output feedback tracking control for multi-agent consensus with time-varying delays and switching topology[J].Transactions of the Institute of Measurement and Control, 2015, 37(4): 550-559.
[4] Sakurama K, Nakano K. Necessary and sufficient condition for average consensus of networked multi-agent systems with heterogeneous time delays[J].International Journal of Systems Science, 2015, 46(5): 818-830.
[5] Lin P, Jia Y. Multi-agent consensus with diverse time-delays and jointly-connected topologies[J].Automatica, 2011, 47(4): 848-856.
[6] 曾耀武,冯伟. 具有时滞和不确定性多智能体鲁棒一致性研究[J].复杂系统与复杂性科学,2013,10(3):75-80.
Zeng Yaowu, Feng Wei. Robust consensus analysis of milti-agent systems with both time-delay and uncertainty[J].Complex System and Complexity Science, 2013, 10(3), 75-80.
[7] Shang Y. Average consensus in multi-agent systems with uncertain topologies and multiple time-varying delays[J].Linear Algebra and Its Applications, 2014, 459: 411-429.
[8] 宋莉,伍清河. 具有时延和不确定拓扑的二阶多智能体系统的平均一致性[J].控制理论与应用,2013,30(8):1047-1052.
Song Li, Wu Qinghe. Average consensus of second-order multi-agent systems with time-delays and uncertain topologies[J].Control Theory & Applications, 2013, 30(8): 1047-1052.
[9] 高彦平,姜同强,王雯,等. 二阶多智能体系统的一致性分析[J].复杂系统与复杂性科学,2014,11(4):87-91.
Gao Yanping, Jiang Tongqiang, Wang Wen, et al. Consensus analysis of second-order multi-agent systems[J].Complex System and Complexity Science, 2014, 11(4), 87-91.
[10] 杨洪勇,徐邦海,刘飞,等. 分数阶多智能体系统的时延一致性[J].复杂系统与复杂性科学,2013,10(3):81-85.
Yang Hongyong, Xu Banghai, Liu Fei, et al. Consensus of fractional-order multi-agent systems with communication delay[J].Complex System and Complexity Science, 2013, 10(3), 81-85.
[11] Tahbaz-Salehi A, Jadbabaie A. A one-parameter family of distributed consensus algorithms with boundary: From shortest paths to mean hitting times[C]//2006 45th IEEE Conference on Decision and Control, San Dlego,CA,VSA. 2006: 4664-4669.
[12] Nejad B M, Attia S A, Raisch J. Max-consensus in a maxplus algebraic setting: The case of fixed communication topologies[C].Int Symposium on Information, Communication and Automation Technologies, Sarajevo,Bosnia and Herzegovina.2009:1-7.
[13] Shi G, Johansson K H. Convergence of distributed averaging and maximizing algorithms part I: time-dependent graphs[C].2013 American Control Conference (ACC) Washington, DC, USA,2013.
[14] Shi G, Johansson K H. Convergence of distributed averaging and maximizing algorithms part II: state-dependent graphs[C].2013 American Control Conference (ACC) Washington, DC, USA, 2013.
[15] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[16] Godsil C D, Royle G, Godsil C D. Algebraic Graph Theory[M].New York: Springer, 2001.
[17] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control, 2005, 50(5): 655-661.
[18] 王芳,陈鑫,何勇,等. 联合连通条件下的二阶多智能体系统有限时间一致性控制[J].控制理论与应用,2014,31(7):981-986.
Wang Fang, Chen Xin, He Yong, et al. Finite-time consensus control of second-order multi-agent systems with jointly-connected topologies[J].Control Theory & Applications, 2014, 31(7): 981-986.
[1] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed