Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (2): 26-33    DOI: 10.13306/j.1672-3813.2018.02.004
  本期目录 | 过刊浏览 | 高级检索 |
基于信息维数的加权网络分形特性分析
黄毅, 张胜, 戴维凯, 王硕, 杨芳
南昌航空大学信息工程学院,南昌 330063
Fractal Analysis of Weighted Networks by a Modified Information Dimension Method
HUANG Yi, ZHANG Sheng, DAI Weikai, WANG Shuo, YANG Fang
School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(5844 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 复杂网络的分形特性被誉为复杂网络的第三大基本拓扑特性,对这一特性的研究有助于深入理解网络结构的复杂性。信息维数法是度量复杂网络分形特性的常用方法。然而,现有的信息维数法主要用于分析无权网络的分形特性,对加权网络分形特性的分析并不完全适用。受加权网络盒维数算法思想的启发,提出了一种基于信息维数的加权网络分形特性分析方法。首先,利用该方法分析了一类具有规则分形结构的谢尔宾斯基加权分形网络, 结果表明该方法计算所得的信息维数值与该网络的理论维数值十分接近。然后,利用该方法分析了三个实际加权网络的分形特性,并将分析结果与利用加权网络盒维数算法所得结果进行比较,结果表明该方法同样能够较好地度量实际加权网络的分形特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄毅
张胜
戴维凯
王硕
杨芳
关键词 加权网络分形信息维数盒子覆盖法    
Abstract:The fractal property is considered as the third fundamental topology features of complex networks. Studies on the fractal property of complex networks are of great significance for understanding the structure complexity of the network. The information dimension method is a useful tool to measure the fractal property of complex networks. The existing information dimension method is mainly used to analyze the fractal property of unweighted networks, and it is not fully applicable to analyze the fractal property of weighted networks. In this paper, motivated by the idea of box-covering algorithm for weighted complex networks, a fractal analysis method of weighted networks based on information dimension is proposed. We first apply this method to study the fractal property of a family of constructed “Sierpinski” weighted fractal networks, the results show that the fractal dimension of these networks obtained by the proposed method are very close to its theoretical similarity dimension. Then, we apply the proposed method to study the fractal property of three real-world weighted networks and make a detail comparison with the box-covering algorithm, results demonstrate that the proposed method is effective for the fractal scaling analysis of real-world weighted complex networks.
Key wordsweighted networks    fractal    information dimension    box-covering method
收稿日期: 2018-03-07      出版日期: 2019-01-09
ZTFLH:  N94  
基金资助:国家自然科学基金(61162002,61661037);江西省自然科学基金(20151BAB207038);江西省南昌航空大学研究生创新专项资金项目(YC2017023)
作者简介: 黄毅(1993-),男,江西赣州人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
黄毅, 张胜, 戴维凯, 王硕, 杨芳. 基于信息维数的加权网络分形特性分析[J]. 复杂系统与复杂性科学, 2018, 15(2): 26-33.
HUANG Yi, ZHANG Sheng, DAI Weikai, WANG Shuo, YANG Fang. Fractal Analysis of Weighted Networks by a Modified Information Dimension Method. Complex Systems and Complexity Science, 2018, 15(2): 26-33.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.02.004      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I2/26
[1]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature,1998,393 (6684):440-442.
[2]Barabasi A L, Albert L. Emergence of scaling in random networks [J]. Science,1999, 286(5439):509-512.
[3]Song C M, Havlin S, Makse H A. Self-similarity of complex networks [J]. Nature,2005,433 (7024):392-395.
[4]Gou L, Wei B, Sadiq R, et al. Topological vulnerability evaluation model based on fractal dimension of complex networks[J]. Plos One, 2016, 11(1):e0146896.
[5]王江涛,杨建梅.复杂网络的分形研究方法综述[J].复杂系统与复杂性科学,2013,10(4):1-7.
Wang Jiangtao, Yang Jianmei. The review on fractal research of complex network [J]. Complex Systems and Complexity Science, 2013, 10(4):1-7.
[6]Feder J. Fractals [M]. Springer Science & Business Media, 2013.
[7]Song C M, Gallos L K, Havlin S, et al. How to calculate the fractal dimension of a complex network: the box covering algorithm [J]. Journal of Statistical Mechanics: Theory and Experiment,2007(3): P03006.
[8]Kim J S, Goh K I, Kahng B, et al. A box-covering algorithm for fractal scaling in scale-free networks [J].Chaos: An Interdisciplinary Journal of Nonlinear Science,2007,17 (2):026116.
[9]Gao L, Hu Y Q, Di Z. Accuracy of the ball—covering approach for fractal dimension of complex networks and a rank—driven algorithm [J]. Physical Review E,2008,78 (4):046109.
[10] Sun Y Y, Zhao Y J. Overlapping-box-covering method for the fractal dimension of complex networks [J].Physical Review E,2014,89(4): 042809.
[11] Zhang H X, Wei D J, Hu Y, et al. Modeling the self-similarity in complex networks based on Coulomb’s law [J]. Communications in Nonlinear Science & Numerical Simulation,2016,35:97-104.
[12] Wu H R, Kuang L, Wang F, et al. A multiobjective box-covering algorithm for fractal modularity on complex networks [J]. Applied Soft Computing, 2017, 61:294-313.
[13] Shanker O. Defining dimension of a complex network [J]. Modern Physics Letters B,2007,21(6): 321-326.
[14] Guo L, Cai X. The fractal dimensions of complex networks[J].Chinese Physics Letters,2009,26(8):088901.
[15] Wei D J, Wei B, Zhang H X, et al. A generalized volume dimension of complex networks [J]. Journal of Statistical Mechanics: Theory and Experiment, 2014(10): P10039.
[16] Wang X Y, Liu Z Z, Wang M G. The correlation fractal dimension of complex networks [J]. International Journal of Modern Physics C,2013,24 (5):1350033.
[17] Lacasa L, Gomez-Gardenes J .Correlation dimension of complex networks [J]. Physical Review Letters,2013,110(16): 168703.
[18] Wei D J, Wei B, Hu Y, et al. A new information dimension of complex networks [J]. Physics Letters A,2014,378 (16): 1091-1094.
[19] Zhang Q, Luo C H, Li M Z, et al. Tsallis information dimension of complex networks [J]. Physica A: Statistical Mechanics and its Applications, 2015, 419: 707-717.
[20] Rosenberg E. Maximal entropy coverings and the information dimension of a complex network [J]. Physics Letters A, 2017, 381(6): 574-580.
[21] Wei D J, Liu Q, Zhang H X, et al. Box-covering algorithm for fractal dimension of weighted networks [J]. Scientific Reports,2013,3:3049.
[22] Song Y Q, Liu J L, Yu Z G, et al. Multifractal analysis of weighted networks by a modified sandbox algorithm[J]. Scientific Reports,2015,5:17628.
[23] 陶少华, 刘玉华,许凯华,等.基于信息维数的复杂网络自相似性研究[J].计算机工程与应用,2007,43(15):108-110.
Tao Shaohua, Liu Yuhua, Xu Kaihua, et al. Self-similarity research of complex networks based on information dimension [J]. Computer Engineering and Applications, 2007, 43(15):108-110.
[24] Newman M E J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [J]. Physical Review E,2001,64(1):016132.
[25] Carletti T, Righi S. Weighted fractal networks [J]. Physica A,2010,389(10):2134-2142.
[1] 黄毅, 张胜, 戴维凯, 王硕, 杨芳. 加权网络的体积维数[J]. 复杂系统与复杂性科学, 2018, 15(3): 4-4.
[2] 吴栩, 燕汝贞, 王雪飞, 李佳. 基于分形统计测度的投资组合研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 6-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed