Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (3): 75-81    DOI: 10.13306/j.1672-3813.2018.03.009
  本期目录 | 过刊浏览 | 高级检索 |
基于分形统计测度的投资组合研究
吴栩1, 燕汝贞1, 王雪飞1, 李佳2
1.成都理工大学商学院,成都 610059;
2.广州大学经济与统计学院,广州 510006
Portfolio Selection Using Fractal Statistical Measures
WU Xu1, YAN Ruzhen1, WANG Xuefei1, LI Jia2
1.School of Business,Chengdu University of Technology,Chengdu 610059,China;
2.School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
全文: PDF(694 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提升投资组合的有效性,首先构建了分形期望和分形方差两个分形统计测度,给出了两个分形统计测度的运算规则;随后基于分形统计测度构建了分形投资组合模型,给出了分形投资组合模型的解析解;最后以上海证券交易所的所有行业指数为样本,实证分析了分形投资组合模型的有效性。结果发现,分形统计测度弥补了非分形统计测度难以准确测量证券收益和风险的缺陷,分形投资组合模型在确保收益的同时更好地分散了风险,更加有效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴栩
燕汝贞
王雪飞
李佳
关键词 分形投资组合分形统计测度分形期望分形方差    
Abstract:In order to improve the effectiveness of portfolio selection, we firstly construct the statistical measures of fractal expectation and fractal variance, and give the algorithm of two fractal statistical measures. Secondly, a fractal portfolio selection model is built based on the fractal statistical measures and an analytical solution for fractal portfolio selection model is calculated. Lastly, drawing the sample of all industrial indexes from Shanghai Stock Exchange, we verify the feasibility of constructing portfolio selection model using two fractal statistical measures. The empirical results demonstrate that fractal statistical measures make up the defect of the non-fractal statistical measure’s disability to measure the return and risks of stocks accurately, and the fractal portfolio model is more effective in diversifying risks while ensuring returns.
Key wordsfractal portfolio selection    fractal statistical measure    fractal expectation    fractal variance
收稿日期: 2017-07-21      出版日期: 2019-01-31
ZTFLH:  F830.59  
  O213.9  
基金资助:教育部人文社科青年基金项目(17YJC790168);国家自然科学基金青年项目(71501018);成都理工大学青年科学基金项目(2017QJ14);成都理工大学中青年骨干教师培养计划项目(KYGG201713);广州大学现有引进人才科研启动费项目(69-18ZX10204)
通讯作者: 李佳(1985-),女,河北邢台人,博士,讲师,主要研究方向为投资组合与风险管理。   
作者简介: 吴栩(1986-),男,四川巴中人,博士,副教授,主要研究方向为证券投资与分形市场。
引用本文:   
吴栩, 燕汝贞, 王雪飞, 李佳. 基于分形统计测度的投资组合研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 75-81.
WU Xu, YAN Ruzhen, WANG Xuefei, LI Jia. Portfolio Selection Using Fractal Statistical Measures. Complex Systems and Complexity Science, 2018, 15(3): 75-81.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.03.009      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I3/75
[1]Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
[2]Tanaka H, Guo P, Türksen I B. Portfolio selection based on fuzzy probabilities and possibility distributions[J]. Fuzzy Sets and Systems, 2000, 111(3): 387-397.
[3]Xu W J, Deng X, Li J. A new fuzzy portfolio model on background risk using MCFOA[J]. International Journal of Fuzzy Systems, 2015, 17(2): 246-255.
[4]Detemple J. Portfolio selection: a review[J]. Journal of Optimization Theory & Applications, 2014, 161(1):1-21.
[5]Alexander G J, Baptista A M, Yan S. Portfolio selection with mental accounts and estimation risk[J]. Journal of Empirical Finance, 2017, 41(3): 161-186.
[6]Zhang J, Jin Z, An Y. Dynamic portfolio optimization with ambiguity aversion[J]. Journal of Banking & Finance, 2017, 79(6): 95-109.
[7]Lim G, Kim S Y, Lee H, et al. Multifractal detrended fluctuation analysis of derivative and spot markets[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 386(1):259-266.
[8]Cajueiro D O, Tabak B M. Multifractality and herding behavior in the Japanese stock market [J]. Chaos Solitons & Fractals, 2009, 40(1):497-504.
[9]Yuan Y, Zhuang X T, Jin X. Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(11): 2189-2197.
[10] Wang Y D, Liu L,Gu R B. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis[J]. International Review of Financial Analysis, 2009, 18(5): 271-276.
[11] Zunino L, Tabak B M, Figliolaf A, et al. A multifractal approach for stock market inefficiency [J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387 (26):6558-6566.
[12] Mandelbrot B B. Three fractal models in finance: discontinuity, concentration, risk[J]. Economic Notes, 1997, 26(2): 197-212.
[13] Peters E E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics [M]. New York: John Wiley&Sons, Inc.1994.
[14] Mandelbrot B B. A multifractal walk down Wall Street[J]. Scientific American, 1999, 280(2): 70-73.
[15] Mandelbrot B B, Hudson R L. The (mis) Behavior of Markets: A Fractal View of Risk, Ruin, and Reward[M]. New York: Basic Books, 2004.
[16] Lux T, Alfarano S. Financial power laws: Empirical evidence, models, and mechanisms[J]. Chaos, Solitons & Fractals, 2016, 88(7): 3-18.
[17] Wei Y, Wang P. Forecasting volatility of SSEC in Chinese stock market using multifractal analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(7): 1585-1592.
[18] Wei Y, Wang Y, Huang D. A copula-multifractal volatility hedging model for CSI 300 index futures[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23): 4260-4272.
[19] Lévy P. Théorie de L'addition des Variables Aléatoires[M]. Paris: Gauthier- Vilars, 1937.
[20] Samorodnitsky G, Taqqu M S. Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance[M]. Boca Raton: CRC Press Inc., 1994.
[21] Stoyanov S V, Racheva-Iotova B, Rachev S T, et al. Stochastic models for risk estimation in volatile markets: a survey[J]. Annals of Operations Research, 2010, 176(1): 293-309.
[22] Mandelbrot B B. How long is the coast of britain? statistical self-similarity and fractional dimension[J]. Science, 1967, 156(5): 636-638.
[23] Falconer K. Fractal Geometry: Mathematical Foundations and Applications[M]. 2nd Edition. Chichester: John Wiley&Sons, Inc., 2003.
[24] Merton R C. An analytic derivation of the efficient portfolio frontier[J]. Journal of Financial and Quantitative Analysis, 1972, 7(4): 1851-1872.
[25] Gabaix X, Gopikrishnan P, Plerou V, et al. A theory of power-law distributions in financial market fluctuations[J]. Nature, 2003, 423(6937): 267-70.
[26] Gabaix X. Power laws in economics and finance[J]. Quantitative Finance, 2009, 1(1): 255-293.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed