Abstract:In this paper, the optimally weighted stochastic pooling network is investigated for the theoretical and experimental analyses of the random parameter estimation. The stochastic pooling network is first optimized by the random noise components, and then improved by the linear optimum weight coefficients. The theoretical expressions of the optimum weight vector and the mean square error of the stochastic pooling network with an arbitrary number of nodes are deduced. In practice, since the statistical information of parameter and background noise is often unknown, the approximation estimation algorithms of the optimum weight vector and the mean square error are presented and based on the observations. Theoretical and experimental results both verify the optimization ability of random noise, and show the outstanding estimation performance of the optimally weighted stochastic pooling network.
[1]Berger T, Gibson J D.Lossy source coding[J]. IEEE Transactions on Information Theory, 2002, 44(6):2693-2723. [2]Zozor S., Amblard P O, Duchêne C. On pooling networks and fluctuation in suboptimal detection framework[J]. Fluctuation & Noise Letters, 2007, 7(1):39-60. [3]Mcdonnell M D, Abbott D, Pearce C E M. An analysis of noise enhanced information transmission in an array of comparators[J]. Microelectronics Journal, 2002, 33(12):1079-1089. [4]Mcdonnell M D, Amblard P O, Stocks N G. Stochastic pooling networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2009, (1):01012. [5]Nguyen, T.Robust data-optimized stochastic analog-to-digital converters[J]. IEEE Transactions on Signal Processing, 2007, 55(6):2735-2740. [6]Panzeri S, Petroni F, Petersen R S, et al. Decoding neuronal population activity in rat somatosensory cortex: role of columnar organization.[J]. Cerebral Cortex, 2003, 13(1):45-52. [7]Hoch T,Wenning G, Obermayer K. Optimal noise-aided signal transmission through populations of neurons.[J]. Physical Review E, 2003, 68(1):011911. [8]Nikitin A, Stocks N G, Morse R P. Enhanced information transmission with signal-dependent noise in an array of nonlinear elements.[J]. Physical Review E, 2007, 75(2):021121. [9]Martorell F, Rubio A. Cell architecture for nanoelectronic design[J]. Microelectronics Journal, 2008, 39(8):1041-1050. [10] Gastpar M, Vetterli M. Power, spatio-temporal bandwidth, and distortion in large sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(4):745-754. [11] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physical A, 1981, 14(11):453. [12] Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 2008, 70(1):45-105. [13] Dykman M I, Mcclintock P V E. What can stochastic resonance do?[J]. Nature, 1998, 391(6665):344. [14] Kay S. Can detectability be improved by adding noise?[J].IEEE Signal Processing Letters, 2000, 7(1):8-10. [15] Abbott D. Overview: Unsolved problems of noise and fluctuations[C]// Chaos. 2001:526-538. [16] Stocks N G, Allingham D, Morse R P. The application of suprathreshold stochastic resonance to cochlear implant coding [J]. Fluctuation & Noise Letters, 2002, 2(3):169-181. [17] Hari V N,Anand G V, Premkumar A B, et al. Design and performance analysis of a signal detector based on suprathreshold stochastic resonance[J]. Signal Processing, 2012, 92(7):1745-1757. [18] Oliaei O. Stochastic resonance in sigma-delta modulators[J]. Electronics Letters, 2003, 39(2):173-174. [19] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Analog-to-digital conversion using suprathreshold stochastic resonance[C]// Proceedings of SPIE-The International Society for Optics and Photonics, 2005:75-84. [20] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Quantization in the presence of large amplitude threshold noise[J]. Fluctuation & Noise Letters, 2005, 5(03):457-468. [21] Xu L,Vladusich T, Duan F, et al. Decoding suprathreshold stochastic resonance with optimal weights[J]. Physics Letters A, 2015, 379(38): 2277-2283. [22] Manolakis D G, Ingle V K, Kogon S M. Statistical and Adaptive Signal Processing[M]. 阔永红,译. 西安:西安电子科技大学出版社, 2012.