Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (3): 71-78    DOI: 10.13306/j.1672-3813.2019.03.007
  本期目录 | 过刊浏览 | 高级检索 |
完全开放系统的幂律分布及其适用对象
李鹤龄1,2, 王雅婷1, 杨斌1,2, 沈宏君1,2
1.宁夏大学物理与电子电气工程学院,银川 750021;
2.宁夏沙漠信息智能感知重点实验室,银川 750021
Power-Law Distribution of a Completely Open System and Its Suitable Objects
LI Heling1,2, WANG Yating1,2, YANG Bin1,2, SHEN Hongjun1,2
1.School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2.Key Lab on Information Sensing and Intelligent Desert, Yinchuan 750021, China
全文: PDF(865 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 越来越多的证据显示不同系综可以不等价,特别是长程相互作用的系统,系综不等价表现得更为明显。本文认为长程相互作用的系统对应幂律分布,并且证明了幂律分布不适用近独立系统和短程相互作用的广延系统。因此完善或丰富各种幂律分布系综就显得非常重要。基于最大熵原理和Rényi熵,获得了完全开放系统、巨正则系统、温度压强系统等各种其他系统的幂律分布,并且给出计算各种热力学量、平均值的公式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹤龄
王雅婷
杨斌
沈宏君
关键词 复杂系统Rényi熵系综不等价幂律分布完全开放系统    
Abstract:More and more evidences show that different ensembles can be not equivalent. Especially in the systems with long-range interactions, the ensemble inequivalence is more obvious. We believed that the long-range interaction system corresponds to the power-law distribution, and proved that the power-law distributions are not applicable to the near-independent systems and the extensive systems with the short-range interactions. Therefore, it is imperative to perfect or enrich various ensembles of the power-law distribution. Based on the principle of maximum entropy and Rényi entropy, we obtained the power-law distributions of a completely open system, grand canonical system, isothermal-isobaric system and various other systems, and gave a variety of formulas for calculating thermodynamic quantities.
Key wordscomplex system    Rényi entropy    ensemble inequivalence    power-law distribution    completely open system
收稿日期: 2019-04-27      出版日期: 2019-10-24
ZTFLH:  N94  
基金资助:国家自然科学基金(61167002);宁夏自然科学基金(NZ17043);宁夏教育厅高等学校自然科学基金(NGY2017054)
作者简介: 李鹤龄(1960-),男,河北沧州人,硕士,教授,主要研究方向为复杂系统和反常统计物理。
引用本文:   
李鹤龄, 王雅婷, 杨斌, 沈宏君. 完全开放系统的幂律分布及其适用对象[J]. 复杂系统与复杂性科学, 2019, 16(3): 71-78.
LI Heling, WANG Yating, YANG Bin, SHEN Hongjun. Power-Law Distribution of a Completely Open System and Its Suitable Objects. Complex Systems and Complexity Science, 2019, 16(3): 71-78.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.03.007      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I3/71
[1]Neumann R M. The entropy of a single Gaussian macromolecule in a noninteracting solvent [J]. J Chem Phys, 1977, 66: 870.
[2]Wissner-gross A D, Freer C E. Causal entropic forces [J]. Phys Rev Lett, 2013, 110: 168702.
[3]Jacobson T. Thermodynamics of spacetime: the einstein equation of state[J]. Phys Rev Lett, 1995, 75(7): 1260.
[4]Padmanabhan T. Thermodynamical aspects of gravity: new insights [J]. Rep Prog Phys, 2009, 73(4): 046901.
[5]Erik P Verlinde. On the Origin of Gravity and the Laws of Newton [J]. Journal of High Energy Physics, 2011, 4: 425.
[6]Pazy E. Quantum statistical modified entropic gravity as a theoretical basis for MOND[J]. Phys Rev D, 2013, 87(8): 084063.
[7]Bagchi D, Tsallis C. Fermi-pasta-ulam-tsingou problems: passage from boltzmann to q-statistics [J]. Physica A, 2018, 491: 869.
[8]Saslaw W C. Gravitational Physics of Stellar and Galactic Systems[M]. Cambridge: Cambridge University Press, 1985.
[9]Gamero L G, Plastino A, Torres M E. Wavelet analysis and nonlinear dynamics in a nonextensive setting [J]. Physica A, 1997, 246: 487.
[10] 周涛,韩筱璞,闫小勇,等.人类行为时空特性的统计力学[J]. 电子科技大学学报. 2013, 42(4): 481.
Zhou Tao, Ham Xiaopu, Yan Xiaoyong, et al. Statistical mechanics on temporal and spatial activities of human [J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481.
[11] 汪秉宏, 周涛, 王文旭, 等. 当前复杂系统研究的几个方向[J]. 复杂系统与复杂性科学,2008,5(4): 21.
Wang Binghong, Zhou Tao, Wang Wenxu, et al. Several directions in complex system research [J]. Complex Systems and Complexity Science, 2008, 5(4): 21.
[12] 胡海波,王林.幂律分布研究简史[J]. 物理, 2005,34(12): 989.
Hu Hai-bo, Wang Lin. A brief history of power-law distributions [J]. Physics, 2005, 34(12): 989.
[13] 北京大学物理系《量子统计物理学》编写组. 量子统计物理学[M]. 北京:北京大学出版社,1987.
[14] Campa A,Dauxois T, Ruffo S. Statistical mechanics and dynamics of solvable models with long-range interactions [J]. Phys Rep,2009, 480: 57.
[15] Schmidt M, Kusche R, Hippler T, et al. Negative heat capacity for a cluster of 147 sodium atoms[J]. Phys Rev Lett, 2001, 86: 1191.
[16] Takahashi K, Nishimori H, Martin-mayor V. Ensemble equivalence in spin systems with short-range interactions [J]. J Stat Mech, 2011,(8): 08024.
[17] Guggenheim E A. Grand partition functions and so-called “thermodynamic pProbability” [J]. J Chem Phys, 1939, 7: 103.
[18] Hill T L. Thermodynamics of Small Systems [M]. New York: Dover, 1994.
[19] Hill T L, Chamberlin R V. Fluctuations in energy in completely open small systems [J]. Nano Lett, 2002, 2(6): 609.
[20] Li H L, Xiong Y, Li Y Y. The tsallis statistical distribution in a completely open system [J]. Physica A, 2011, 390: 2769.
[21] 李鹤龄,王娟娟,杨斌,等.由N-E-V 分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质[J]. 物理学报,2015, 64(4): 040501.
Li Heling, Wang Juanjuan, Yan Bin, et al. Investigation of thermodynamic properties of weakly interacting Fermi gas in weakly magnetic field by using the N-E-V distribution and pseudo-potential method [J]. Acta Physica Sinica, 2015, 64(4): 040501.
[22] Abe S. Anomalous behavior of q-averages in non-extensive statistical mechanics [J]. J Stat Mech, 2009, (7):07027.
[23] Abe S. Generalized molecular chaos hypothesis and the H-theorem: problem of constraints and amendment of non-extensive statistical mechanics [J]. Phys RevE, 2009,79(4): 041116.
[24] 李鹤龄,王娟娟,杨斌,等.产生幂律分布的一种机制[J]. 复杂系统与复杂性科学, 2016, 13(4): 18.
Li Heling, Wang Juanjuan, Yan Bin, et al. A mechanism generating power-law and other distributions [J]. Complex systems and complexity science, 2016, 13(4): 18.
[25] 龚昌德.热力学与统计物理学[M]. 北京:高等教育出版社,1983.
[26] Lenzi E K, Mendes R S, da Silva L R. Statistical mechanics based on rényi entropy[J]. Physica A, 2000, 280: 337.
[27] Parvan A S, BiróT S. Extensive Rényi statistics from non-extensive entropy [J]. Phys Lett A, 2005, 340: 375.
[28] Bashkirov A G. Maximum Rényi entropy principle for systems with power-law Hamiltonians [J]. Phys Rev Lett., 2004, 93(13): 130601.
[29] Rényi A. Probability Theory [M].North-Holland:Amsterdam, 1970.
[30] 李鹤龄. 第八种统计分布、涨落及热力学平衡态的稳定性[J]. 武汉大学学报(理学版), 2008,54: 37.
Li Heling. The eighth statistical distribution, fluctuations and the stability of the thermodynamic equilibrium state [J]. J Wuhan Univ (Nat Sci Ed), 2008, 54: 37
[1] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[2] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
[3] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed