Abstract:Open innovation has become the main mode of enterprise innovation. The innovation community provides enterprises with a large number of externalinnovative resources. Effectively integrating various types of user′s knowledge in the innovation community can meet the needs of product and service innovation and promote the development of open innovation. Considering the knowledge characteristics of open innovation community and enterprise demand, this paper constructs the knowledge network model from three dimensions: innovation demand, innovation plan and innovation subject, then uses ontology to visualize and mine user-generated content in the innovation community and finally Huawei product custom community is taken as an example empirical research. Research shows that the knowledge network model based on ontology can realize multi-dimensional discovery of user′s knowledge in open innovation communities and help companies identify key users,innovative user demands and solutions to key technical problems, which can effectively overcome the complex problems of the knowledge discovery process in the open innovation community and provide new ideas for knowledge discovery for enterprises to develop open innovation.
单晓红, 王春稳, 刘晓燕, 杨娟. 基于知识网络的开放式创新社区知识发现研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 62-70.
SHAN Xiaohong, WANG Chunwen, LIU Xiaoyan, YANG Juan. Research on Knowledge Discovery of Open Innovation Community Based on Knowledge Network. Complex Systems and Complexity Science, 2020, 17(1): 62-70.
[1]王磊,马龙江,彭巍等.群智创新社区用户创新能力分析[J].科技进步与对策,2018,35(18):42-47. Wang Lei, Ma Longjiang, Peng Wei, et al. Research on the innovation ability of online users in crowd sourcing innovation community [J]. Science & Technology Progress and Policy, 2018, 35 (18): 42-47. [2]Jang H,Olfman L,Ko I,et al. The influence of On-Line brand community characteristics on community commitment and band loyalty[J].International Journal of Electronic Commerce,2008,12(3):57-80. [3]Manco G,Rullo P,Galucci L,et al.Rialto: a knowledge discovery suite for data analysis[J]. Expert Systems with Applications, 2016:145-164. [4]Piad-Morffis A,Yoan G,Rafael M.A corpus to support ēhealth knowledge discovery technologies[J].Journal of Biomedical Informatics,2019,94:103172. [5]Safhi H M,Bouchra F,Brahim O.Assessing reliability of big data knowledge discovery process[J].Procedia ComputerScience,2019,148:30-36. [6]Wang Y, Wu J, Ru Zhang, et al.The construction of ‘user-knowledge-product’ co-creation knowledge cyberspace served for product innovation[J]. Procedia CIRP,2019,83:467-472. [7]廖晓,李志宏,席运江.基于加权知识网络分析的企业社区创新用户专家知识发现方法[J].系统工程理论与实践,2016,36(5):1268-1279. Liao Xiao, Li Zhihong, Xi Yunjiang. Knowledge discovery methods on user-experts in enterprise virtual communities based on weighted knowledge network[J].Systems Engineering-Theory & Practice, 2016,36 (5): 1268-1279. [8]唐洪婷,李志宏,秦睿.基于超网络的大众协同创新社区用户知识模型研究[J].管理学报,2017,14(6):859-867. Tang Hongting, Li Zhihong, Qin Rui. Research on user and knowledge model of the mass collaborative innovation community based on super-network [J]. Chinese Journal of Management, 2017, 14 (6): 859-867. [9]廖晓,李志宏,席运江.基于加权知识网络的企业社区用户创新知识建模及分析方法[J].系统工程理论与实践,2016,36(1):94-105. Liao Xiao, Li Zhihong, Xi Yunjiang. Modeling and analyzing methods of user-innovation knowledge based in enterprise communities based on weighted knowledge network [J]. Systems Engineering-Theory & Practice, 2016, 36 (1): 94-105. [10] 唐洪婷,李志宏.基于hMETIS与FP-Growth的协同创新社区领域知识发现方法[J].系统工程理论与实践,2018,38(8):2068-2078. Tang Hongting, Li Zhihong. Identifying domain knowledge in collaborative innovation community: Based on hMETIS and FP-Growth [J]. Systems Engineering-Theory & Practice, 2018, 38 (8): 2068-2078. [11] 王莉,李沁芳,马云龙.基于改进网络志方法的开放式创新社区中领先用户识别研究[J].科研管理,2019,40(10):259-267. Wang Li, Li Qinfang, Ma Yunlong. Identifying lead users in open innovation community based on extended netnography [J]. Science Research Management, 2019, 40 (10): 259-267. [12] 戚桂杰, 李奕莹. 企业开放式创新社区在线用户贡献度研究[J]. 科技进步与对策, 2016, 33(14):81-87. Qi Guijie, Li Yiying. Research on the contribution degrees of online users in the open innovation communities for enterprises[J]. Science & Technology Progress and Policy, 2016, 33 (14): 81-87. [13] Gebauer J,Tang Y,Baimai C.User requirements of mobile technology: results from a content analysis of user reviews[J].Information Systems and E-Business Management,2008,6(4):361-384. [14] 李贺,张克永,洪闯.开放式创新社区创客知识共享影响因素研究[J].图书情报工作,2017,61(21):13-21. Li He, Zhang Keyong, Hong Chuang. Research on influencing factors of maker knowledge sharing in open innovation community [J]. Library and Information Service, 2017, 61 (21): 13-21. [15] Liao K J,Ye D H,Yan J J.Expert knowledge discovery and representation based on weighted semantic network[J].Journal of the China Society for Scientific and Technical Information,2012,31(1):60-64. [16] Sanz-Ibán~ez C,Sergi L,Salvador A C.Brokers in a destination’s knowledge networks[J].Journal of Destination Marketing&Management,2019(11):120-129. [17] 刘译阳,姜珊.基于大数据下社会网络分析与知识共享管理研究[J].情报科学,2019,37(4):109-115. Liu Yiyang, Jiang Shan. Research on social network analysis and knowledge sharing management based on big data [J]. Information Science, 2019, 37 (4): 109-115. [18] Liu X, Yeung A C L, Lo C K Y, et al. The moderating effects of knowledge characteristics of firms on the financial value of innovative technology products[J]. Journal of Operations Management, 2014, 32(3):79-87. [19] 赵息,李文亮.知识特征与突破性创新的关系研究——基于企业社会资本异质性的调节作用[J].科学学研究,2016,34(1):99-106. Zhao Xi, Li Wenliang. Knowledge attribute and radical innovation: the moderating effect of heterogeneity social capital [J]. Studies in Science of Science, 2016, 34 (1): 99-106. [20] 姜鑫.基于社会网络分析的组织非正式网络内隐性知识共享及其实证研究[J].情报理论与实践,2012,35(2):68-71,91. Jiang Xin. Empirical study of tacit knowledge sharing within the organizational informal network based on SNA [J]. Information Studies: Theory & Application, 2012, 35 (2): 68-71, 91. [21] 肖璐.基于知识超网络的网络社区学术资源多粒度聚合研究[J].情报杂志,2018,37(12):182-187,194. Xiao Lu. Research on the multi-granularity integration for academic resource in network community based on the knowledge supernetwork[J]. Journal of Intelligence, 2018, 37 (12): 182-187,194.