Complex Network Invulnerability and Node Importance Evaluation Model Based on Redundancy
WANG Zihang1a, JIANG Dali1a, QI Lei1a, CHEN Xing1b, ZHAO Yubo2
1. a.Department of Military Logistics; b.Department of Fundamental Studies,Army Logistics University,Chongqing 401311,China; 2. Noncommissioned Officer School of Army Armored Force University,Changchun 130137, China
Abstract:In order to provide effective decision-making basis for improvement of complex network invulnerability and protection of important nodes, this paper establishes a complex network invulnerability and node importance evaluation model based on redundancy. Firstly, the redundancy of complex networks is defined. At the same time, based on the redundancy, the invulnerability of the network is quantified. Then, this paper uses the global attribute of redundancy to evaluate the importance of each node in the network by means of node deletion. Finally, this paper uses actual networks for simulation experiments. The results show that the model and algorithm can provide a solution to the problem of high invulnerability network construction under some cost constraints, and at the same time they are effective and superior for evaluating the importance of nodes in larger networks.
[1] 吴俊,谭索怡,谭跃进,等.基于自然连通度的复杂网络抗毁性分析[J].复杂系统与复杂性科学,2014,11(1):77-86. Wu Jun, Tan Suoyi, Tan Yuejin, et al. Analysis of invulnerability in complex networks based on natural connectivity[J]. Complex Systems and Complexity Science, 2014, 11(1): 77-86. [2] 田田,吴俊,谭跃进.基于自然连通度的复杂网络抗毁性仿真优化研究[J].复杂系统与复杂性科学,2013,10(2):88-94. Tian Tian, Wu Jun, Tan Yuejin. Simulation optimization for invulnerability of complex networks based on natural connectivity[J]. Complex Systems and Complexity Science, 2013, 10(2): 88-94. [3] 蒋丰景.无标度网络建模与抗毁性研究[D].西安:西安电子科技大学,2014. Jiang Fengjing. Research on scale-free networks modeling and invulnerability[D]. Xi'an: Xidian University, 2014. [4] 王灿.无线传感器网络抗毁性测度模型及网络拓扑优化研究[D].上海:华东理工大学,2015. Wang Can. The research on survivablity measure model and topology optimization of wireless sensor network[D]. Shanghai: East China University of Science and Technology, 2015. [5] 姚杰.基于复杂网络理论的电力通信网节点重要性评估方法研究[D].北京:华北电力大学,2014. Yao Jie. Research on node importance evaluation method of electric power communication network based on complex network theory[D]. Beijing: North China Electric Power University, 2014. [6] 谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006(11):79-83+102. Tan Yuejin, Wu Jun, Deng Hongzhong. Evaluation method for node importance based on node contraction in complex networks[J]. Systems Engineering—Theory & Practice, 2006(11): 79-83+102. [7] 刘媛妮.复杂网络抗毁性建模优化及其评估技术研究[D].北京:北京邮电大学,2011. Liu Yuanni. Invulnerability optimization and evaluation techniques of complex network[D]. Beijing: Beijing University of Posts and Telecommunications, 2011. [8] 陈静,孙林夫.复杂网络中节点重要度评估[J].西南交通大学学报,2009,44(3):426-429. Chen Jing, Sun Linfu. Evaluation of node importance in complex networks[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 426-429. [9] 张喜平,李永树,刘刚,等.节点重要度贡献的复杂网络节点重要度评估方法[J].复杂系统与复杂性科学, 2014, 11(3): 26-32,49. Zhang Xiping, Li Yongshu, Liu Gang, et al. Evaluation method of importance for nodes in complex networks based on importance contribution[J]. Complex Systems and Complexity Science, 2014, 11(3): 26-32,49. [10] 阮逸润,老松杨,王竣德,等.基于领域相似度的复杂网络节点重要度评估算法[J].物理学报,2017,66(3):371-379. Ruan Yirun, Lao Songyang, Wang Junde, et al. Node importance measurement based on neighborhood similarity in complex network[J]. Acta Physica Sinica, 2017, 66(3): 371-379. [11] 宋琛,尹波,张贤坤.基于叠加随机游走的复杂网络节点重要度评估方法[J].信息工程大学学报,2016,17(6):730-734,759. Song Chen, Yin Bo, Zhang Xiankun. Node evaluation method based on superposed random walk[J]. Journal of Information Engineering University, 2016, 17(6): 730-734,759. [12] 董政呈,方彦军,田猛.相互依存网络抗毁性研究综述[J].复杂系统与复杂性科学,2017,14(3):30-44. Dong Zhengcheng, Fang Yanjun, Tian Meng. Review on invulnerability of interdependent networks[J]. Complex Systems and Complexity Science, 2017, 14(3): 30-44. [13] Wu J,Barahona M,Tan Y J,et al.Robustness of regular ring lattices based on natural connectivity[J].International Journal of Systems Science,2011,42(7):1085-1092. [14] Zhang X K,Wu J,Tan Y J,et al.Structural robustness of weighted complex networks based on natural connectivity[J]. Chin Phys Lett,2013,30(10):108901. [15] Cvetkovic'D M,Doob M,Sachs H.Spectra of Graphs[M].New York:Academic Press,1979. [16] 郭强,殷冉冉,刘建国. 基于TOPSIS的时序网络节点重要性研究[J]. 电子科技大学学报, 2019, 48(2): 296-300. Guo Qiang, Yin Ranran, Liu Jianguo. Node importance identification for temporal networks via the TOPSIS method[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 296-300. [17] 邵鹏, 胡平. 复杂网络特殊用户对群体观点演化的影响[J]. 电子科技大学学报, 2019, 48(4): 604-612. Shao Peng, Hu Ping. The influence mechanism of special members on opinion evolution of group members in complex network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(4): 604-612. [18] Wang K, Liu S X, Yu H T, et al. Predicting missing links of complex network via effective common neighbors[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 432-439. [19] 黄贤英, 杨林枫, 刘小洋, 等. 社交网络突发事件传播速率模型研究[J]. 电子科技大学学报, 2019, 48(3): 462-468. Huang Xianying, Yang Linfeng, Liu Xiaoyang, et al. Research on the emergency events propagation rate model based on social network[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 462-468. [20] 迟钰雪,刘怡君.基于超网络的线上线下舆情演化模型研究[J].系统工程理论与实践,2019,39(1):259-272. Chi Yuxue, Liu Yijun. Research on online and offline public opinion evolution model based on the theory of supernetwork[J]. Systems Engineering—Theory & Practice, 2019, 39(1): 259-272. [21] Fei L G,Deng Y.A new method to identify influential nodes based on relative entropy[J]. Chaos,Solitons and Fractals, 2017,104:257-267. [22] Zhang Z K,Zhang C X,Han X P,et al.Emergence of blind areas in information spreading[J].PLoS ONE, 2014, 9(4): e95785. [23] Chen D B,Gao H,Lv L,et al.Identifying influential nodes in large-scale directed networks:the role of clustering[J].PLoS ONE,2013,8(10):e77455.