Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (1): 38-47    DOI: 10.13306/j.1672-3813.2021.01.006
  本期目录 | 过刊浏览 | 高级检索 |
基于幂律特性的企业用电量网络构建与中心企业分析
许荣华, 胡仁杰, 綦方中, 马庆国
浙江工业大学管理学院,杭州 310023
Network Modeling and Central Node Analysis of Enterprise Correlations in Terms of Electricity Consumption Based on Power-Law Distribution
XU Ronghua, HU Renjie, QI Fangzhong, MA Qingguo
School of Management, Zhejiang University of Technology, Hangzhou 310023,China
全文: PDF(2418 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于杭州市2017年工业企业用电量数据,提出了在用电量相关性网络中选择中心企业的方法,并论证了其满足的网络特性及核心作用。首先使用条件Pearson相关性模型消除季节等宏观因素影响,计算企业之间的真实相关性;其次设定相关系数阈值过滤出中心结构;最后利用头重分布、同配混合、小世界等性质对网络进行实证分析。研究结果表明,度大顶点及其连接的分布满足二八定律;所选中心企业能够有效促进其他非中心企业之间的联系,为决策者提供重要启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许荣华
胡仁杰
綦方中
马庆国
关键词 幂律特性用电量网络二八定律同配混合小世界特性    
Abstract:Based on the 2017 Hangzhou electricity consumption data of industrial enterprises, this paper aims to establish correlation networks to filter out the central enterprises and their connections in the city. First, we exclude the seasonal effect on electricity consumption and calculate the pure correlation of these enterprises by using the conditional Pearson correlation model. Next, we adjust the correlation coefficient thresholds by making the node degree distribution approximately satisfy the power-law distributions. Then, the empirical analysis on network properties is carried out, including the heavy-head distribution, the assortative mixing, and the small-world property. Based on these properties, we propose an approach for identifying central enterprises in the electricity consumption correlation network. The study shows that the central enterprises are closely related and can promote the connection between other non-central enterprises. Decision-makers can regulate the central enterprises detected by our approach in order to affect the overall development of the city.
Key wordspower-law    electricity consumption network    80/20 rule    assortative mixing    small-world
收稿日期: 2020-05-29      出版日期: 2020-12-28
ZTFLH:  N949  
基金资助:国家自然科学基金(71904174);国网浙江省电力有限公司科学技术项目(5211JY18000X)
作者简介: 许荣华(1989),女,山东聊城人,博士,讲师,主要研究方向为数据挖掘与复杂网络建模与分析及其应用。
引用本文:   
许荣华, 胡仁杰, 綦方中, 马庆国. 基于幂律特性的企业用电量网络构建与中心企业分析[J]. 复杂系统与复杂性科学, 2021, 18(1): 38-47.
XU Ronghua, HU Renjie, QI Fangzhong, MA Qingguo. Network Modeling and Central Node Analysis of Enterprise Correlations in Terms of Electricity Consumption Based on Power-Law Distribution. Complex Systems and Complexity Science, 2021, 18(1): 38-47.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.01.006      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I1/38
[1] 刘涤尘,冀星沛,王波,等.基于复杂网络理论的电力通信网拓扑脆弱性分析及对策[J]. 电网技术, 2015, 39(12):325331.
Liu Dichen, Ji Xipei, Wang Bo, et al. Analysis and countermeasures of topological vulnerability of power communication network based on complex network theory[J]. Grid Technology, 2015, 39(12):325331.
[2] Zhou Y, Zhang S S, Wu L B, et al. Predicting sectoral electricity consumption based on complex network analysis[J]. Applied Energy, 2019, 255(S1):113790.
[3] Yao C Z, Lin J N, Lin Q W, et al. A study of causality structure and dynamics in industrial electricity consumption based on Granger network[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 462:297320.
[4] Yao C Z, Lin J N, Liu X F. A study of hierarchical structure on South China industrial electricity-consumption correlation[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 444: 129145.
[5] Yao C Z, Lin Q W, Lin J N. A study of industrial electricity consumption based on partial Granger causality network[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 461:629646.
[6] Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3):424438.
[7] Krishna R, Guo S. A partial granger causality approach to explore causal networks derived from multi-parameter data[C]//Proceedings of the 6th International Conference on Computational Methods in Systems Biology, Rostock, Germany, 2008:927.
[8] Tumminello M, Lillo F, Mantegna R N. Correlation, hierarchies, and networks in financial markets[J]. Journal of Economic Behavior & Organization, 2009, 75(1):4058.
[9] Xiao B Q, Yang Y, Peng X R, et al.Measuring the connectedness of European electricity markets using the network topology of variance decompositions[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535:122279.
[10] Kantar E, Keskin M. The relationships between electricity consumption and GDP in Asian countries, using hierarchical structure methods[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(22):56785684.
[11] Tang Y, Xiong J J, Jia Z Y, et al. Complexities in financial network topological dynamics: modeling of emerging and developed stock markets[J]. Complexity, 2018:131.
[12] Hu S, Yang H, Cai B, et al. Research on spatial economic structure for different economic sectors from a perspective of a complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(17):36823697.
[13] Li X, Jin Y Y, Chen G. Complexity and synchronization of the World trade Web[J]. Physica A: Statistical Mechanics and its Applications, 2003, 328(12):287296.
[14] Lee K M, Yang J S, Kim G, et al. Impact of the topology of global macroeconomic network on the spreading of economic crises[J]. PLoS One, 2011, 6(3):e18443.
[15] Flake G W, Lawrence S, Giles C L, et al. Self-organization and identification of web communities[J]. Computer, 2002, 35(3):6670.
[16] Clauset A, Shalizi C R, Newman M E J. Power-law distributions in empirical data[J]. Annals of Applied Statistics, 2012, 8(1):89119.
[17] Yamamoto Y, Yokoyama K. Common and unique network dynamics in football games[J]. PLoS One, 2011,6(12):e29638.
[18] Yang Y, Yang H. Complex network-based time series analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(56):13811386.
[19] Newman M E J. Power laws, paretodistributions and Zipf’s law[J]. Contemporary Physics, 2005, 46(5):323351.
[20] Lorenz M O. Methods of measuring the concentration of wealth[J]. Publications of the American Statistical Association, 1905, 9(70):209219.
[21] Calderón C, Lin L. The direction of causality between financial development and economic growth[J]. Journal of Development Economics, 2003, 72(1):321334.
[22] Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement[J]. International Journal of Nursing Studies, 1986, 327(8476):307.
[23] Morck R, Yeung B, Yu W. The information content of stock markets: why do emerging markets have synchronous stock price movements? [J]. Journal of Financial Economics, 2000, 58(1):215260.
[24] Moore D S, Notz W I, Notz W.Statistics: Concepts and Controversies[M]. London: Macmillan, 2006.
[25] Lu E T, Hamilton R J. Avalanches and the distribution of solar flares[J]. The Astrophysical Journal, 1991, 380(2):8992.
[26] Florence P S, Zipf G K. Human behaviour and the principle of least effort[J]. The Economic Journal, 1950, 60(240):808810.
[27] Achlioptas D, Clauset A, Kempe D, et al. On the bias of traceroute sampling: or, power-law degree distributions in regular graphs[J]. Journal of the Association for Computing Machinery, 2009, 56(4):128.
[28] Reed W J. The Pareto, Zipf and other power laws[J]. Economics Letters, 2001, 74(1):1519.
[29] Moody J. Race, school integration, and friendship segregation in America[J]. American Journal of Sociology,2001, 107(3):679716.
[30] Abbasi A, Altmann J, Hossain L. Identifying the effects of co-authorship networks on the performance of scholars: a correlation and regression analysis of performance measures and social network analysis measures[J]. Journal of Informetrics, 2011, 5(4):594607.
[31] Bonacich P. Power and centrality: a family of measures[J]. American Journal of Sociology, 1987, 92(5):11701182.
[32] Yong L U, Polgar M, Luo X, et al. Social network analysis of a criminal hacker community[J]. Journal of Computer Information Systems, 2010, 51(2):3141.
[33] Milgram S. The small world problem[J]. Psychology Today, 1967, 2(1):6167.
[1] 刘晓露, 贾书伟. 用户—产品二部分网络中用户声誉实证研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 37-44.
[2] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[3] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[4] 贾承丰, 韩华, 完颜娟, 吕亚楠. 基于网络模体特征攻击的网络抗毁性研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 43-50.
[5] 郭强, 岳强, 李仁德, 刘建国. 入用户情感的高阶奇异值分解推荐算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 1-9.
[6] 胡枫, 刘猛, 赵静, 雷蕾. 蛋白复合物超网络特性分析及应用[J]. 复杂系统与复杂性科学, 2018, 15(4): 31-38.
[7] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[8] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[9] 刘晓露, 贾书伟, 王建民. 基于Skyline Query的高声誉用户识别方法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 62-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed