Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 9-14    DOI: 10.13306/j.1672-3813.2021.03.002
  本期目录 | 过刊浏览 | 高级检索 |
一类具有异维节点的复杂动态网络外同步控制
方荣东1, 王银河1, 汤晓2
1.广东工业大学自动化学院,广州 510006;
2.中科启迪光电子科技(广州)有限公司,广州 510006
Generalized Outer Synchronization Control for a Class of Complex Dynamic Networks with Different-dimensional Nodes
FANG Rongdong1, WANG Yinhe1, TANG Xiao2
1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
2. Zhongkeqidi Optoelectronic Technology (Guangzhou) Co, Ltd, Guangzhou 510006, China
全文: PDF(1463 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对两个复杂动态网络,在节点异维且耦合强度未知的情况下,研究了它们的广义外同步控制问题。与现有的研究文献相比较,涉及的驱动响应网络均不需要满足通常的耗散条件。在两个网络对应节点具有相似动态行为的条件下,着重两个网络间的连接强度之间的误差估计,并基于Lyapunov稳定性方法设计了自适应广义外同步控制器。最后通过数值仿真验证了方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方荣东
王银河
汤晓
关键词 复杂动态网络广义外同步异维节点连接强度的误差估计自适应控制    
Abstract:This paper investigates the generalized outer synchronization between two complex dynamic networks with different-dimensional nodes and unknown coupling strengths. Compared to the existing literature, the connection relations between nodes in the networks do not have to satisfy the dissipative condition. Supposing the corresponding nodes have similar dynamic behaviors and focusing on the error estimation of the coupling strength between two networks, the adaptive synchronization controller is synthesized based on Lyapunov stability theory. Finally, a simulation example is given to verify the effectiveness of the method proposed in this paper.
Key wordscomplex dynamic networks    generalized outer synchronization    different-dimensional nodes    error estimation of coupling strength    adaptive control
收稿日期: 2020-11-04      出版日期: 2021-06-18
ZTFLH:  TP273  
基金资助:国家自然科学基金(61673120)
作者简介: 方荣东(1996-),男,广东河源人,硕士研究生,主要研究方向为复杂网络外同步控制。
引用本文:   
方荣东, 王银河, 汤晓. 一类具有异维节点的复杂动态网络外同步控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 9-14.
FANG Rongdong, WANG Yinhe, TANG Xiao. Generalized Outer Synchronization Control for a Class of Complex Dynamic Networks with Different-dimensional Nodes. Complex Systems and Complexity Science, 2021, 18(3): 9-14.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.002      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/9
[1] Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
[2] Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410(6825):268-276.
[3] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4/5): 175-308.
[4] Arenas A, Díaz-Guilera A, Kurths J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153.
[5] 王树国,姚洪兴. 具有时变拓扑结构的复杂网络的牵制控制[J]. 复杂系统与复杂性科学,2012,9(3):76-81.
Wang Shuguo, Yao Hongxing. Pinning synchronization of complex networks with time-varying topological structures[J]. Complex Systems and Complexity Science, 2012, 9(3):76-81.
[6] Delellis P, Dibernardo M, Garofalo F. Novel decentralized adaptive strategies for the synchronization of complex networks[J]. Automatica, 2009, 45(5):1312-1318.
[7] Lü L, Yu M, Li C R, et al. Projective synchronization of a class of complex network based on high-order sliding mode control[J]. Nonlinear Dynamics, 2013, 73(1/2): 411-416.
[8] Zhou T, Zhao M, Chen G R, et al. Phase synchronization on scale-free networks with community structure[J]. Physics Letters A, 2006, 368(6):431-434.
[9] Lu W L, Liu B, Chen T P. Cluster synchronization in networks of coupled nonidentical dynamical systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010, 20(1): 013120.
[10] Huang Y L, Chen W Z, Ren S Y, et al. Analysis and pinning control for generalized synchronization of delayed coupled neural networks with different dimensional nodes[J]. Journal of the Franklin Institute, 2018, 355(13): 5968-5997.
[11] Yang X S, Cao J D, Lu J Q. Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(2):371-384.
[12] 王立夫,井元伟,孔芝. 复杂网络输出同步及稳定性分析[J]. 复杂系统与复杂性科学,2007,4(3):35-42.
Wang Lifu, Jing Yuanwei, Kong Zhi. Output synchronization and stability analysis of complex networks[J]. Complex Systems and Complexity Science, 2007,4(3):35-42.
[13] Li C P, Sun W G, Kurths J. Synchronization between two coupled complex networks[J]. Physical Review E, 2007, 76(4): 046204.
[14] Tang H W, Chen L, Lu J A, et al. Adaptive synchronization between two complex networks with nonidentical topological structures[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387(22): 5623-5630.
[15] Zheng S. Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling[J]. Nonlinear Dynamics, 2012, 67(4):2621-2630.
[16] 谢勇,姚洪兴,张芳. 时滞驱动-响应网络系统的函数投影同步[J]. 复杂系统与复杂性科学,2012,9(4):50-54.
Xie Yong, Yao Hongxing, Zhang Fang. Function projective synchronization in drive-response dynamical networks with time-delay[J]. Complex Systems and Complexity Science, 2012, 9(4):50-54.
[17] Lei Y F, Zhang L L, Wang Y H, et al. Generalized matrix projective outer synchronization of non-dissipatively coupled time-varying complex dynamical networks with nonlinear coupling functions[J]. Neurocomputing, 2017, 230: 390-396.
[18] Zhang L L, Lei Y F, Wang Y H, et al. Generalized outer synchronization between non-dissipatively coupled complex networks with different-dimensional nodes[J]. Applied Mathematical Modelling, 2018, 55: 248-261.
[19] Zheng S, Wang S G, Dong G G, et al. Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 284-291.
[20] Liu S, Wang Q Y. Outer synchronization of small-world networks by a second-order sliding mode controller[J]. Nonlinear Dynamics, 2017, 89(3): 1817-1826.
[21] Fan C X, Jiang G P, Jiang F H. Synchronization between two complex dynamical networks using scalar signals under pinning control[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(11): 2991-2998.
[22] Stefanovska A, Haken H, McClintock P V E, et al. Reversible transitions between synchronization states of the cardiorespiratory system[J]. Physical Review Letters, 2000, 85(22): 4831-4834.
[23] Wu X J, Lu H T. Outer synchronization of uncertain general complex delayed networks with adaptive coupling[J]. Neurocomputing, 2012, 82: 157-166.
[24] 巩长忠,李飞燕. 不确定复杂网络的广义矩阵投影同步[J]. 复杂系统与复杂性科学,2015,12(3):53-60.
Gong Changzhong, Li Feiyan. Generalized matrix projective synchronization of uncertain complex networks[J]. Complex Systems and Complexity Science, 2015, 12(3):53-60.
[25] Lu J Q, Ding C D, Lou J G, et al. Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers[J]. Journal of the Franklin Institute, 2015, 352(11): 5024-5041.
[26] Wang Y H, Fan Y Q, Wang Q Y, et al. Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(8): 1786-1795.
[27] Fan Y Q, Wang Y H, Zhang Y, et al. The synchronization of complex dynamical networks with similar nodes and coupling time-delay[J]. Applied Mathematics and Computation, 2013, 219(12): 6719-6728.
[28] Langville A N, Stewart W J. The Kronecker product and stochastic automata networks[J]. Journal of Computational and Applied Mathematics, 2004, 167(2): 429-447.
[1] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[2] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[3] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[4] 王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 77-84.
[5] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[6] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[7] 成云, 宋运忠. 基于保证集的多智能体系统自触发控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 97-104.
[8] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[9] 范建明, 薛斌强. 带有丢包的分布式网络系统的滚动时域融合估计策略[J]. 复杂系统与复杂性科学, 2021, 18(3): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed