Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (3): 45-50    DOI: 10.13306/j.1672-3813.2021.03.007
  本期目录 | 过刊浏览 | 高级检索 |
不同理性预期下量子库诺特模型的动态演化分析
田英楠, 王嘉琪, 张新立
辽宁师范大学数学学院,辽宁 大连 116029
Analysis of the Dynamic Evolution of the Quantum Cournot Model Under Different Rational Expectations
TIAN Yingnan, WANG Jiaqi, ZHANG Xinli
College of Mathematics, Liaoning Normal University, Dalian 116029, China
全文: PDF(1283 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对库诺特双寡头量子纳什均衡的稳定性问题,利用量子博弈与非线性动力学理论,构建了不同理性预期下,以量子纠缠为变量的动态博弈模型,分析了模型的均衡解及稳定性条件。得出结论:量子均衡解在一定参数条件下是局部稳定的,企业预期调整速度会导致均衡解呈现复杂性特征,而量子纠缠可有效地控制其稳定性。对模型进行了数值分析,当参数不满足稳定性条件时会出现分岔、奇异吸引子等混沌现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田英楠
王嘉琪
张新立
关键词 量子库诺特博弈局部稳定性混沌    
Abstract:Aiming at the stability of the Cournot duopoly quantum Nash equilibrium, using quantum game theory and nonlinear dynamics theory, a dynamic game model with quantum entanglement as a variable under different rational expectations is constructed. We analyze the equilibrium points and stability conditions of the model. It is concluded that the quantum equilibrium point is locally stable under certain parameter conditions. The adjustment speed of firm will cause the equilibrium point to exhibit complexity characteristics, and quantum entanglement can effectively control its stability. This paper makes a numerical simulation analysis of the model. When the parameters do not satisfy the stability conditions, chaotic characteristics such as bifurcation and strange attractors will appear.
Key wordsquantum cournot duopoly game    local stability    chaos
收稿日期: 2020-09-08      出版日期: 2021-06-18
ZTFLH:  O225  
基金资助:辽宁省教育厅项目(LF201783613)
通讯作者: 张新立(1970-),男,山东莘县人,博士,副教授,主要研究方向为量子博弈及应用。   
作者简介: 田英楠(1995-),女,吉林梅河口人,硕士研究生,主要研究方向为量子博弈及应用。
引用本文:   
田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
TIAN Yingnan, WANG Jiaqi, ZHANG Xinli. Analysis of the Dynamic Evolution of the Quantum Cournot Model Under Different Rational Expectations. Complex Systems and Complexity Science, 2021, 18(3): 45-50.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.03.007      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I3/45
[1] 王龙, 王靖, 武斌. 量子博弈:新方法与新策略[J]. 智能系统学报, 2008, 3(4):294-304.
Wang Long, Wang Jing, Wu Bin. Quantum games:new methodologies and strategies [J]. CAAI Transactions on Intelligent Systems, 2008, 3(4):294-304.
[2] Li H, Du J F, Massar S. Continuous-variable quantum games[J]. Physics Letters A, 2002, 306(2):73-78.
[3] Sekiguchi Y, Sakahara K, Sato T. Uniqueness of nash equilibria in a quantum cournot duopoly game[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(14):1189-1195.
[4] Lo C F, Kiang D. Quantum oligopoly[J]. Europhysics Letters, 2003, 64(5):592-598.
[5] Du J F, Li H, Ju C Y. Quantum games of asymmetric information[J]. Physical Review E, 2003, 68(1):1-5.
[6] Zhou J, Ma L, Li Y. Multiplayer quantum games with continuous-variable strategies[J]. Physics Letters A, 2005, 339(1):10-17.
[7] Frackiewicz P. Quantum approach to cournot-type competition[J]. International Journal of Theoretical Physics, 2017, 57(2):353-362.
[8] 董瑞. 不同理性预期下Stackelberg模型的动态复杂性[J]. 系统工程理论与实践, 2017, 37(7):1761-1767.
Dong Rui. Dynamic complexity of the Stackelberg model with heterogeneous expectations[J]. Systems Engineering-Theory & Practice, 2017, 37(7):1761-1767.
[9] Agiza H N, Elsadany A A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players[J]. Applied Mathematics & Computation, 2004, 149(3):843-860.
[10] 于羽. 基于差异化产品动态寡头博弈的系统动力学分析[J].数学的实践与认识, 2016, 46(19):93-101.
Yu Yu. System dynamics analysis of dynamic duopoly game based on differentiated products[J]. Mathematics in Practice and Theory, 2016, 46(19):93-101.
[11] 张骥骧, 达庆利, 王延华. 寡占市场中有限理性博弈模型分析[J].中国管理科学, 2006, 14(5):109-113.
Zhang Jixiang, Da Qingli, Wang Yanhua. Analysis of a game with bounded rationality in oligopoly market[J]. Chinese Journal of Management Science, 2006, 14(5):109-113.
[12] Rong H , Qi C. Chaotic dynamics and chaos control of cournot model with heterogenous players[C]. Proceedings of the 2011 International Conference on Informatics,Cybernetics,and Computer Engineering. Melbourne, Australia,2011:549-557.
[13] 黄萌佳, 张雅慧, 唐兴巧. 具有知识溢出效应的双寡头博弈的混沌动力学分析[J]. 温州大学学报:自然科学版, 2017, 38(4):13-20.
Huang Mengjia, Zhang Yahui, Tang Xingqiao. Analysis on chaos dynamics of duopoly game with knowledge spillover effect[J]. Journal of Wenzhou University (Natural Science Edition), 2017, 38(4):13-20.
[14] Agiza H N, Hegazi A S, Elsadany A A. Complex dynamics and synchronization of a duopoly game with bounded rationality[J]. Mathematics & Computers in Simulation, 2002, 58(2):133-146.
[15] Dubiel-Teleszynski T. Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale[J]. Communications in Nonlinear Science& Numerical Simulation, 2011, 16(1): 296-308.
[16] Elabbasy E M, Agiza H N, Elsadany A A. Analysis of nonlinear triopoly game with heterogeneous players[J]. Computers & Mathematics with Applications, 2009, 57(3):488-499.
[17] 张志远, 于维生. 有限理性行为规则下豪泰林模型的复杂性[J]. 系统工程理论与实践, 2015,35(4): 920-927.
Zhang Zhiyuan, Yu Weisheng. Complexity of the Hotelling model with bounded rationality rules[J]. Systems Engineering-Theory & Practice, 2015, 35(4): 920-927.
[18] Agiza H N, Elsadany A A. Nonlinear dynamics in the cournot duopoly game with heterogeneous players[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 320(1):512-524.
[1] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[2] 董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
[3] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[4] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[5] 肖世富, 陈红永, 牛红攀. 一类对称双势阱Duffing系统周期解的衍生与演化[J]. 复杂系统与复杂性科学, 2017, 14(3): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed