Abstract:Aiming at the stability of the Cournot duopoly quantum Nash equilibrium, using quantum game theory and nonlinear dynamics theory, a dynamic game model with quantum entanglement as a variable under different rational expectations is constructed. We analyze the equilibrium points and stability conditions of the model. It is concluded that the quantum equilibrium point is locally stable under certain parameter conditions. The adjustment speed of firm will cause the equilibrium point to exhibit complexity characteristics, and quantum entanglement can effectively control its stability. This paper makes a numerical simulation analysis of the model. When the parameters do not satisfy the stability conditions, chaotic characteristics such as bifurcation and strange attractors will appear.
田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
TIAN Yingnan, WANG Jiaqi, ZHANG Xinli. Analysis of the Dynamic Evolution of the Quantum Cournot Model Under Different Rational Expectations. Complex Systems and Complexity Science, 2021, 18(3): 45-50.
[1] 王龙, 王靖, 武斌. 量子博弈:新方法与新策略[J]. 智能系统学报, 2008, 3(4):294-304. Wang Long, Wang Jing, Wu Bin. Quantum games:new methodologies and strategies [J]. CAAI Transactions on Intelligent Systems, 2008, 3(4):294-304. [2] Li H, Du J F, Massar S. Continuous-variable quantum games[J]. Physics Letters A, 2002, 306(2):73-78. [3] Sekiguchi Y, Sakahara K, Sato T. Uniqueness of nash equilibria in a quantum cournot duopoly game[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(14):1189-1195. [4] Lo C F, Kiang D. Quantum oligopoly[J]. Europhysics Letters, 2003, 64(5):592-598. [5] Du J F, Li H, Ju C Y. Quantum games of asymmetric information[J]. Physical Review E, 2003, 68(1):1-5. [6] Zhou J, Ma L, Li Y. Multiplayer quantum games with continuous-variable strategies[J]. Physics Letters A, 2005, 339(1):10-17. [7] Frackiewicz P. Quantum approach to cournot-type competition[J]. International Journal of Theoretical Physics, 2017, 57(2):353-362. [8] 董瑞. 不同理性预期下Stackelberg模型的动态复杂性[J]. 系统工程理论与实践, 2017, 37(7):1761-1767. Dong Rui. Dynamic complexity of the Stackelberg model with heterogeneous expectations[J]. Systems Engineering-Theory & Practice, 2017, 37(7):1761-1767. [9] Agiza H N, Elsadany A A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players[J]. Applied Mathematics & Computation, 2004, 149(3):843-860. [10] 于羽. 基于差异化产品动态寡头博弈的系统动力学分析[J].数学的实践与认识, 2016, 46(19):93-101. Yu Yu. System dynamics analysis of dynamic duopoly game based on differentiated products[J]. Mathematics in Practice and Theory, 2016, 46(19):93-101. [11] 张骥骧, 达庆利, 王延华. 寡占市场中有限理性博弈模型分析[J].中国管理科学, 2006, 14(5):109-113. Zhang Jixiang, Da Qingli, Wang Yanhua. Analysis of a game with bounded rationality in oligopoly market[J]. Chinese Journal of Management Science, 2006, 14(5):109-113. [12] Rong H , Qi C. Chaotic dynamics and chaos control of cournot model with heterogenous players[C]. Proceedings of the 2011 International Conference on Informatics,Cybernetics,and Computer Engineering. Melbourne, Australia,2011:549-557. [13] 黄萌佳, 张雅慧, 唐兴巧. 具有知识溢出效应的双寡头博弈的混沌动力学分析[J]. 温州大学学报:自然科学版, 2017, 38(4):13-20. Huang Mengjia, Zhang Yahui, Tang Xingqiao. Analysis on chaos dynamics of duopoly game with knowledge spillover effect[J]. Journal of Wenzhou University (Natural Science Edition), 2017, 38(4):13-20. [14] Agiza H N, Hegazi A S, Elsadany A A. Complex dynamics and synchronization of a duopoly game with bounded rationality[J]. Mathematics & Computers in Simulation, 2002, 58(2):133-146. [15] Dubiel-Teleszynski T. Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale[J]. Communications in Nonlinear Science& Numerical Simulation, 2011, 16(1): 296-308. [16] Elabbasy E M, Agiza H N, Elsadany A A. Analysis of nonlinear triopoly game with heterogeneous players[J]. Computers & Mathematics with Applications, 2009, 57(3):488-499. [17] 张志远, 于维生. 有限理性行为规则下豪泰林模型的复杂性[J]. 系统工程理论与实践, 2015,35(4): 920-927. Zhang Zhiyuan, Yu Weisheng. Complexity of the Hotelling model with bounded rationality rules[J]. Systems Engineering-Theory & Practice, 2015, 35(4): 920-927. [18] Agiza H N, Elsadany A A. Nonlinear dynamics in the cournot duopoly game with heterogeneous players[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 320(1):512-524.