Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 63-70    DOI: 10.13306/j.1672-3813.2022.02.008
  本期目录 | 过刊浏览 | 高级检索 |
有向路径下的一类多智能体系统的能控性分析
张志伟, 纪志坚
青岛大学 a.自动化学院;b.山东省工业控制技术重点实验室,山东 青岛 266071
Controllability of Multi-agent System Based on Directed Paths
ZHANG Zhiwei, JI Zhijian
a. School of Automation; b. Shandong Key Laboratory ofIndustrial Control Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1691 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究一类基于有向路径下的有向符号多智能体系统的能控性,利用Laplacian矩阵和图理论知识进行了分析。首先证明了增加或删除网络中特定的一类边对于系统的能控性没有影响。其次,对有向路径以及路径中增加逆向边和顺向边后系统的能控性进行了研究。结果表明:增加逆向边不改变系统能控性,而增加顺向边时系统能控性需要利用等价划分根据具体情况进行分析。最后,综合以上结果给出了一种构造复杂能控有向拓扑的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志伟
纪志坚
关键词 leader-follower结构多智能体系统能控性有向路径图几乎等价划分    
Abstract:To study the controllability of a class of directed signed multi-agent systems based on directed paths, the Laplacian matrix and graph theory are used to analyze. Firstly, it is proved that adding or removing a specific class of edges in the network does not change the system's controllability. Secondly, the controllability of the directed paths is studied, and then we check the system's controllability after adding reverse or forward edges in the directed paths. The results show that increasing the reverse edges in directed paths has no influences on its original controllability, However, the system's controllability needs to be analyzed according to the specific situations while increasing the forward ones by taking advantage of the almost equitable partitons. Finally, combined with the results above, a method of constructing directed complex network topologies is given.
Key wordsleader-follower framework    multi-agent system    controllability    directed path graph    almost equitable partition
收稿日期: 2021-04-23      出版日期: 2022-05-23
ZTFLH:  TP273+.5  
基金资助:国家自然科学基金(61873136,62033007);山东省泰山学者攀登计划和山东省泰山学者支持计划(ts20190930)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统,复杂网络的分析与控制等。   
作者简介: 张志伟(1996-),男,山东日照人,硕士研究生,主要研究方向为多智能体网络系统。
引用本文:   
张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
ZHANG Zhiwei, JI Zhijian. Controllability of Multi-agent System Based on Directed Paths. Complex Systems and Complexity Science, 2022, 19(2): 63-70.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.008      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/63
[1] SASKA M, HERT D, BACA T, et al. Formation control of unmanned micro aerial vehicles for straitened environments[J]. Autonomous Robots, 2020,44(6):991-1008.
[2] 王潇,纪志坚.基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2):60-68.
WANG X, JI Z J. A new UAV formation algorithm based on MAS[J]. Complex Systems and Complexity Science, 2019,16(2):60-68.
[3] QIN D, LIU A, ZHANG D, et al. Formation control of mobile robot systems incorporating primal-dual neural network and distributed predictive approach[J]. Journal of the Franklin Institute, 2020, 357(17): 12454-12472.
[4] 关永强,纪志坚,张霖,等.多智能体系统能控性研究进展[J], 控制理论与应用, 2015, 32(4): 1-11.
GUAN Y Q, JI Z J, ZHANG L, et al. Recent developments on controllability of multi-agent systems[J].Control Theory & Applications,2015,32(4):1-11.
[5] SU H, LONG M, ZENG Z. Controllability of two-time-scale discrete-time multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 50(4): 1440-1449.
[6] JI Z, LIN H, CAO S, et al. The complexity in complete graphic characterizations of multiagent controllability[J]. IEEE Transactions on Cybernetics, 2021,51(1):64-76.
[7] GUAN Y, WANG L. Controllability of multi-agent systems with directed and weighted signed networks[J]. Systems and Control Letters, 2018, 116(6):47-55.
[8] LU Z, ZHANG L, WANG L. Observability of multi-agent systems with switching topology[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(11):1317-1321.
[9] CHAPMAN A, NABI-ABDOLYOUSEFI M, MESBAHI M. Controllability and observability of network-of-networks via cartesian products[J]. IEEE Transactions on Automatic Control, 2014, 59(10):2668-2679.
[10] LIU B, SU H, WU L, et al. Observability of leader-based discrete-time multi-agent systems over signed networks[J].IEEE Transactions on Network Science and Engineering, 2021, 8(1):25-39.
[11] AJWAD S A, MOULAY E, DEFOORT M, et al. Leader-following consensus of second-order multi-agent systems with switching topology and partial aperiodic sampled data[J]. IEEE Control Systems Letters, 2021, 5(5):1567-1572.
[12] TIAN L, JI Z, HOU T, et al. Bipartite consensus of edge dynamics on coopetition multi-agent systems[J]. Sciece China. Information Sciences, 2019, 62(12): 1-3.
[13] TANG Y, WANG X. Optimal output consensus for nonlinear multi-agent systems with both static and dynamic uncertainties[J]. IEEE Transactions on Automatic Control, 2020,66(4):1733-1740.
[14] KALMAN R E. Contributions to the theory of optimal control[J]. Boletin Sociedad Matematica Mexicana, 1960, 5(1):102-119.
[15] KALMAN R E, HO Y C. Controllability of linear dynamical systems[J].Contributions to Differential Equations,1963, 1(3):189-213.
[16] TANNER H G.On the controlability of nearest neighbor interconnections[C]∥The 43rd IEEE Conference on Decision and Control. Atlantis, Bahamas: IEEE, 2004:2467-2472.
[17] JI M, EGERSTEDT M. A graph-theoretic characterization of controlability for multi-agent systems[C]//Proc of American Control Conf. New York, 2007:4588-4593.
[18] JI Z, WANG Z, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[19] CHAO S, HU G, XIE L. Controllability of multiagent networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2017, 62(10):5457-5462.
[20] LIU X, JI Z, HOU T. Graph partitions and the controllability of directed signed networks[J]. Science China(Information Sciences), 2019, 62(4):96-106.
[21] GAO H, JI Z, HOU T. Equitable partitions in the controllability of undirected signed graphs[C]//The 14th International Conference on Control and Automation. Anchorage, USA: IEEE, 2018:532-537.
[22] RAHMANI A, JI M,MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM Journal on Control Optimization, 2009, 48(1):162-186.
[23] PARLANGELI G, NOTARSTEFANO G. On the reachability and observability of path and cycle graph[J]. IEEE Transaction on Automatic Control, 2012, 57(3):743-748.
[24] LIU X, JI Z. Controllability of multi-agent systems based on path and cycle graphs[J]. International Journal of Robust and Nonlinear Control, 2018,28(1):296-309.
[25] SHE B, MEHTA S, TON C, et al. Controllability ensured leader group selection on signed multiagent networks[J]. IEEE Transactions on Cybernetics,2020,50(1):222-232.
[26] TRENTELMAN H L, STOORVOGEL A A, HAUTUS M. Control Theory Theory for Linear Systems[M]. Berlin:Springer, 2001.
[27] GODSIL C, ROYLE G. Algebraic Graph Theory[M]. Berlin: Springer, 2001.
[1] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[2] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[3] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[4] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[5] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed