Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 68-73    DOI: 10.13306/j.1672-3813.2023.03.009
  本期目录 | 过刊浏览 | 高级检索 |
基于结构平衡理论与地位理论的符号预测算法
崔晓丽1, 薛乐洋1,2, 张鹏1
1.北京邮电大学理学院,北京 100876;
2.北京师范大学复杂系统国际科学中心,广东 珠海 519087
Signed Prediction Algorithm Based on Structural Balance Theory and Status Theory
CUI Xiaoli1, XUE Leyang1,2, ZHANG Peng 1
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
全文: PDF(1354 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对符号预测算法在预测准确率和算法复杂度方面难以均衡的问题,有效地融合社会学发展规律与网络局部特征,提出一种基于结构平衡理论与地位理论计算节点相似度的符号预测算法。为更好的结合上述两种理论对两节点相似度得分的贡献,引用调节因子,将基于两种理论的相似度得分按照调节因子的权重求和,相似度的得分的正负即为边符号预测的结果。最后将算法在多个不同数据集进行实验,与经典的CN算法和PSNBS算法在预测准确率与算法复杂度两个方面进行对比分析。结果显示该算法在预测准确率方面与经典算法非常接近,但在时间复杂度方面本文比经典算法低一个数量级,明显优于经典算法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔晓丽
薛乐洋
张鹏
关键词 结构平衡理论地位理论相似度符号网络符号预测    
Abstract:Aiming at the difficulty of balancing the accuracy and complexity of the sign prediction algorithm, this paper effectively integrates the law of social development and the local characteristics of the network, and proposes a sign prediction algorithm based on structural balance theory and status theory to calculate the similarity of nodes. In order to better combine the contribution of the above two theories to the similarity score of the two nodes, this paper uses the regulator to sum the similarity score based on the two theories according to the weight of the regulator, and the positive or negative of the similarity score is the result predicted by the edge symbol. Finally, the algorithm is tested on several different data sets and compared with the classical CN algorithm and PSNBS algorithm in two aspects of prediction accuracy and algorithm complexity. The proposed algorithm is very close to the classical algorithm in terms of prediction accuracy, but in terms of time complexity, it is an order of magnitude lower than the classical algorithm.It is obviously better than classical algorithm.
Key wordsstructural balance theory    status theory    similarity    signed network    sign prediction
收稿日期: 2022-03-09      出版日期: 2023-10-08
ZTFLH:  C94  
作者简介: 崔晓丽(1995),女,山东日照人,硕士研究生,主要研究方向为符号网络理论及应用。
引用本文:   
崔晓丽, 薛乐洋, 张鹏. 基于结构平衡理论与地位理论的符号预测算法[J]. 复杂系统与复杂性科学, 2023, 20(3): 68-73.
CUI Xiaoli, XUE Leyang, ZHANG Peng. Signed Prediction Algorithm Based on Structural Balance Theory and Status Theory. Complex Systems and Complexity Science, 2023, 20(3): 68-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.009      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/68
[1] 程苏琦,沈华伟,张国清,等.符号网络研究综述[J].软件学报,2014,25(1):115.
CHENG S Q, SHEN H W, ZHANG G Q, et al.Survey of signed network research[J].Journal of Software,2014,25(1):115.
[2] HEIDER F. Attitudes and cognitive organization[J]. The Journal of Psychology Interdisciplinary and Applied, 1946, 21(1):107112.
[3] GHOSN F, PALMER G, BREMER S A. The MID3 data set, 19932001: procedures, coding rules, and description[J]. Conflict Management and Peace Science, 2004, 21(2):133154.
[4] 蓝梦微,李翠平,王绍卿,等.符号社会网络中正负关系预测算法研究综述[J].计算机研究与发展,2015,52 (2):410422.
LAN M W, LI C P, WANG S Q, et al. Survey of sign prediction algorithms in signed social networks[J].Journal of Computer Research and Development,2015,52(2):410422.
[5] GUHA R, KUMAR R, RAGHAVAN P, et a1. Propagation of trust and distrust[C] // Proc of the 13th Int Conf onworld wide Web.New York: ACM, 2004: 403412.
[6] AGRAWAL P, GARG V K,NARAYANAM R. Link label prediction in signed social networks[C] //Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Beijing: AAAI,2013:25912597.
[7] HSIEH C J, CHIANG K Y, DHILLON I S. Low rank modeling of signed networks[C] //Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:507515.
[8] LESKOVEC J, HUTTENLOCHER D,KLEINBERG J.Signed networks in social media[C] //Proceedings of the SIGCHI International Conference on Human Factors in Computing Systems.New York:ACM,2010:13611370.
[9] YANG S H, SMOLA A J,LONG B, et al.Friend or frenemy?prediction signed ties in social networks[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2012:555564.
[10] SYMEONIDIS P, TIAKAS E. Transitive node similarity:Prediction and recommending links in signed social networks[J]. Internet & Web Information Systems,2014,17(4):743776.
[11] 佘宏俊,胡梦缘.基于符号网络的边值预测方法研究[J].武汉理工大学学报(信息与管理工程版),2015,37 (5):464468.
SHE H J, HU M Y. Research of link prediction based on signed networks[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2015,37(5):464468.
[12] ZHANG W Y, WU B, LIU Y. Integrating multi-feature for link sign prediction in signed networks[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(5): 8084.
[13] 刘苗苗,郭景峰,陈晶.相似度与结构平衡论结合的符号网络边值预测[J].工程科学与技术,2018, 50(4): 161169.
LIU M M, GUO J F, CHEN J. Link prediction in signed networks based on similarity and structural balance theory[J].Advanced Engineering Sciences,2018,50(4):161169.
[14] CA RTWRIGHT D, HARARY F. Structural balance: a generalization of Heider’s theory [J]. Psychological Review,1956,63(5):27.
[15] LESKOVEC J, HUTTENLOCHER D, K1EINBERG J. Predicting positive and negative links in online social networks[C] //Proc of the 19th Int Conf on World Wide Web. New York:ACM,2010:641650.
[16] SRINIVASAN A. Local balancing influences global structure in social networks[J].Proc of the National Academy of Sciences of the United States of America, 2011, 108(5):17511752.
[17] EASLEY D, KLEINBERG J. Networks, Crowds, and Markets: Reasoning About a Highly connected world[M]. New York:Cambridge University Press,2010:119152.
[18] CHIANG K Y, NATARAJAN N, TEWARI A, et al. Exploiting longer cycles for link prediction in signed networks[C] // Proceedings of the 20th ACM Conference on Information and Knowledge Management.New York: ACM, 2011:11571162.
[19] CHIANG K Y, HSIEH C J, NATARAJAN N, et al. Prediction and clustering in signed networks: a local to global perspective[J]. Journal of Machine Learning Research, 2013, 15(1):11771213.
[1] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[2] 张奥博, 樊瑛, 狄增如. 符号网络下平衡结构对舆论形成的影响[J]. 复杂系统与复杂性科学, 2019, 16(3): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed