Abstract:To address the problems of low accuracy and poor robustness of traditional data-driven battery state of health prediction model, this paper develops a time series prediction model fusing both nonlinear and linear branches. The nonlinear time series prediction branch is formed by a one-dimensional convolutional neural network with a multi-size parallel structure in series with a bidirectional gated recurrent neural network, and the linear branch is constructed by an autoregressive model. Two branches in parallel output prediction results through a fully connected layer. The above prediction model has the generalization ability of the nonlinear part and the memory ability of the linear part, and is more sensitive to the change of input amplitude. The whale optimization algorithm is used to effectively search the optimal model hyper-parameters. The effectiveness and superiority of the linear nonlinear fusion prediction model proposed in this paper are verified by comparing existing models and ablation experiments.
崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
CUI Xiaokai, WANG Qingzhi, LIU Qipeng. A Data-driven Model for Prediction of Lithium Battery State of Health[J]. Complex Systems and Complexity Science, 2024, 21(3): 154-159.
[1] 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. [2] 罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013 (1): 140-144. LUO W L, ZHANG L Q, LV C, et al. Review on foreign status of life prediction of lithium-ion batteries[J]. Journal of Power Sources, 2013 (1): 140-144. [3] ZHANG Q, WHITE R E. Capacity fade analysis of a lithium-ion cell[J]. Journal of Power Sources, 2008, 179(2): 793-798. [4] 李超然,肖飞,樊亚翔,杨国润,唐欣.基于卷积神经网络的锂离子电池SOH估算[J].电工技术学报,2020,35(19):4106-4119. LI C R, XIAO F, FAN Y X, et al. An approach to lithium-ion battery SOH[J]. Transactions of China Electrotechnical Society,2020, 35(19): 4106-4119. [5] 倪水平,李慧芳.基于一维卷积神经网络与长短期记忆网络结合的电池荷电状态预测方法[J].计算机应用,2021,41(5):1514-1521. NI S P, LI H F. Battery state-of-charge prediction method based on one-dimensional convolutional neural network combined with long short-term memorynetwork[J]. Computer Applications, 2021, 41(5): 1514-1521. [6] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9. [7] LIU F, ZHENG J, ZHENG L, et al. Combining attention-based bidirectional gated recurrent neural network and two-dimensional convolutional neural network for document-level sentimentclassification[J]. Neurocomputing, 2020, 371: 39-50. [8] PARK J, LEE M, KIM G, et al. Integrated approach based on dual extendedKalman filter and multivariate autoregressive model for predicting battery capacity using health indicator and SOC/SOH[J]. Energies, 2020, 13(9): 2138. [9] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [10] 曹广华,赵中林,许昀昊.基于GRU的锂电池组健康状态预测研究[J].吉林大学学报(信息科学版),2022,40(2):181-187. CAO G H, ZHAO L Z, XU Y H.Research on health state prediction of lithium battery pack based on GRU[J]. Journal of Jilin University (Information Science Edition), 2022, 40(2):181-187. [11] 王鑫,吴际,刘超,杨海燕,杜艳丽,牛文生.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018,44(4):772-784. WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. [12] National Aeronautics and Space Administration Prognostics Center of Excellence.PCoE datasets[EB/OL].[2022-10-06].https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery. [13] 朱元富,贺文武,李建兴,等.基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J].储能科学与技术,2021,10(3):1163-1176. ZHU Y F, HE W W, LI J X, et al. Estimation of SOC of lithium battery based on Bi-LSTM/Bi-GRU recurrent neural network[J]. Energy Storage Science and Technology, 2021,10(3):1163-1176. [14] 张国豪, 刘波. 采用 CNN 和 Bidirectional GRU 的时间序列分类研究[J]. 计算机科学与探索, 2019, 13(6): 916. ZHANG G H, LIU B.Research on time series classification using CNN and Bidirectional GRU[J]. Journal of Frontiers of Computer Science and Techno, 2019, 13(6): 916. [15] 周键. 测控专业综合实验教学改革和实践[J]. 智库时代,2021(42):104-106,145. ZHOU J. Comprehensive experimental teaching reform and practice of measurement and control specialty[J] Think Tank Times, 2021 (42): 104-106,145.