Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 83-87    DOI: 10.13306/j.1672-3813.2025.01.011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一类具有Farey Tree特性概周期驱动非光滑系统的奇异非混沌吸引子
赵奕凡1, 杜传斌2, 沈云柱2
1.青岛大学数学与统计学院,山东 青岛 266071;
2.济南大学数学科学学院,济南 250022
Strange Nonchaotic Attractors for a Quasiperiodic Driven Nonsmooth System with Farey Tree
ZHAO Yifan1, DU Chuanbin2, SHEN Yunzhu2
1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China;
2. School of Mathematical Sciences, Jinan University, Ji’nan 250022, China
全文: PDF(4869 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以一类具有Farey Tree特性的概周期驱动非光滑系统为研究对象,证实了奇异非混沌吸引子的存在性,并进一步分析了它的统计学特性。首先,利用相图和功率谱定性方法分析奇异非混沌吸引子的分形特性。再利用最大李雅普诺夫指数、相敏感指数、功率谱、递归图和有限时间李雅普诺夫指数分布定量方法进一步描述奇异非混沌吸引子的性质。结果表明,该系统存在奇异非混沌吸引子,该奇异非混沌吸引子表现出多种不同于其他类型吸引子的统计学特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵奕凡
杜传斌
沈云柱
关键词 非光滑系统最大李雅普诺夫指数相敏感指数奇异非混沌吸引子    
Abstract:Taking a quasiperiodic driven nonsmooth system with Farey tree as the research object, the existence of the strange nonchaotic attractor is confirmed and its statistical properties are further analyzed. Firstly, the fractal properties of strange nonchaotic attractor are analyzed by using phase diagram and power spectrum qualitative methods. The properties of strange nonchaotic attractor are described by means of maximum Lyapunov exponent, phase sensitive function, recursive analysis, spectral distribution function and finite-time Lyapunov exponent distribution. The results show that there are strange nonchaotic attractors in the system, and strange nonchaotic attractors exhibit a variety of statistical properties different from other types of attractors.
Key wordsnonsmooth system    maximum Lyapunov exponent    phase sensitive function    strange nonchaotic attractor
收稿日期: 2023-07-11      出版日期: 2025-04-27
ZTFLH:  O415.6  
  O322  
基金资助:国家自然科学基金重点项目(11732014);山东省自然科学基金面上项目(ZR2021MA095)
通讯作者: 沈云柱(1993-),男,山东济南人,博士,讲师,主要研究方向为奇异非混沌理论及其应用。   
作者简介: 赵奕凡(2000-),女,河北邯郸人,硕士研究生,主要研究方向为奇异非混沌动力学。
引用本文:   
赵奕凡, 杜传斌, 沈云柱. 一类具有Farey Tree特性概周期驱动非光滑系统的奇异非混沌吸引子[J]. 复杂系统与复杂性科学, 2025, 22(1): 83-87.
ZHAO Yifan, DU Chuanbin, SHEN Yunzhu. Strange Nonchaotic Attractors for a Quasiperiodic Driven Nonsmooth System with Farey Tree[J]. Complex Systems and Complexity Science, 2025, 22(1): 83-87.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.011      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/83
[1] GREBOGI C, OTT E, PELIKAN S, et al. Strange attractors that are not chaotic[J]. Physica D, 1984, 13(1/2): 261-268.
[2] LIU Z, ZHU Z. Strange nonchaotic attractors from quasiperiodically forced Ueda’s circuit[J]. International Journal of Bifurcation and Chaos, 1996, 6(7): 1383-1388.
[3] THAMILMARAN K, SENTHILKUMAR D V, VENKATESAN A, et al. Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit[J]. Physical Review E, 2006, 74(3): 036205.
[4] VENKATESAN A, LAKSHMANAN M, PRASAD A, et al. Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator[J]. Physical Review E, 2000, 61(4): 3641.
[5] HEAGY J, DITTO W L. Dynamics of a two-frequency parametrically driven Duffing oscillator[J]. Journal of Nonlinear Science, 1991, 1: 423-455.
[6] DING M, KELSO J A S. Phase-resetting map and the dynamics of quasi-periodically forced biological oscillators[J]. International Journal of Bifurcation and Chaos, 1994, 4(3): 553-567.
[7] ZHOU C, CHEN T. Robust communication via synchronization between nonchaotic strange attractors[J]. Europhysics Letters, 1997, 38(4): 261.
[8] CHACON R, GARCIA-HOZ A M. Route to chaos via strange non-chaotic attractors by reshaping periodic excitations[J]. Europhysics Letters, 2002, 57(1): 7.
[9] RAMASWAMY R. Synchronization of strange nonchaotic attractors[J]. Physical Review E, 1997, 56(6): 7294.
[10] LAROZE D, BECERRA-ALONSO D, GALLAS J A C, et al. Magnetization dynamics under a quasiperiodic magnetic field[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3567-3570.
[11] MITSUI T, AIHARA K. Dynamics between order and chaos in conceptual models of glacial cycles[J]. Climate Dynamics, 2014, 42: 3087-3099.
[12] HEAGY J F, HAMMEL S M. The birth of strange nonchaotic attractors[J]. Physica D: Nonlinear Phenomena, 1994, 70(1/2): 140-153.
[13] YALCINKAYA T, LAI Y C. Blowout bifurcation route to strange nonchaotic attractors[J]. Physical Review Letters, 1996, 77(25): 5039.
[14] KIM S Y, LIM W, OTT E. Mechanism for the intermittent route to strange nonchaotic attractors[J]. Physical Review E, 2003, 67(5): 056203.
[15] SENTHILKUMAR D V, SRINIVASAN K, THAMILMARAN K, et al. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force[J]. Physical Review E, 2008, 78(6): 066211.
[16] ZHANG Y, LUO G. Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system[J]. Journal of Sound and Vibration, 2013, 332(21): 5462-5475.
[17] YUE Y, MIAO P, XIE J. Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system[J]. Nonlinear Dynamics, 2017, 87: 1187-1207.
[18] 沈云柱, 张凡辉, 东广霞. 概周期驱动分段Logistic系统的奇异非混沌吸引子[J]. 河北师范大学学报:自然科学版, 2019 (3): 207-212.
SHEN Y Z, ZHANG F H, DONG G X. Strange Non-chaotic attractors in a piecewise logistic system driven by almost periodic function[J]. Journal of Hebei Normal University: Natural Science Edition, 2019 (3): 207-212.
[19] LI G, YUE Y, LI D, et al. The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(5): 053124.
[20] LI G, YUE Y, GREBOGI C, et al. Strange nonchaotic attractors in a periodically forced piecewise linear system with noise[J]. Fractals, 2022, 30(1): 2250003.
[21] PRING S R, BUDD C J. The dynamics of regularized discontinuous maps with applications to impacting systems[J]. SIAM Journal on Applied Dynamical Systems, 2010, 9(1): 188-219.
[1] 张玉玺, 孙小淇. 概周期驱动二维正弦系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 53-57.
[2] 赵奕凡, 沈云柱, 杜传斌. 一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed