Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 55-63    DOI: 10.13306/j.1672-3813.2025.02.007
  特邀专栏 本期目录 | 过刊浏览 | 高级检索 |
基于二部联合网络的属性缺失图学习方法
韩忠明, 张舒群, 刘燕, 胡启文, 杨伟杰
北京工商大学计算机与人工智能学院,北京 100048
Attribute Missing Graph Learning Method Based on the Structural Joint Bipartite Network
HAN Zhongming, ZHANG Shuqun, LIU Yan, HU Qiwen, YANG Weijie
School of Computer and ArtificialIntelligence, Beijing Technology and Business University, Beijing 100048, China
全文: PDF(5706 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对图数据中普遍存在的节点属性缺失问题,提出了一种新型的属性缺失图学习框架。该框架通过重构二部联合网络,将节点属性映射为边信息,使属性补全与图节点分类任务能够在统一框架下协同进行,灵活处理连续型数据和离散型数据缺失。并基于属性图的属性同质性和结构同质性,提出一种基于二部联合网络的属性缺失表示学习方法,引入边嵌入和注意力机制捕获二部联合网络中属性属性与结构属性之间的相关性,从而提升缺失属性学习。在4个基准图数据集上的实验表明该方法在属性补全任务和后续节点分类任务中均优于基线方法,验证了该方法有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩忠明
张舒群
刘燕
胡启文
杨伟杰
关键词 图神经网络属性补全节点分类二部图网络拓扑    
Abstract:Aiming at the problem of missing node attributes in graph data, we proposes a novel attribute missing graph learning framework. The framework maps node attributes to edge attributes by reconstructing the structural joint bipartite network. This enables attribute completion and graph tasks to be performed together under a unified framework that can handle both continuous and discrete missing data. According to the attribute homogeneity and structural homogeneity of the attribute graph, we propose an attribute missing representation learning method, which introduces edge embeddings and attention mechanisms to capture the correlations between attribute-attribute and structure-attribute in structural joint bipartite network to enhance the missing attribute learning. Experimental results on four real-world datasets show that our framework outperforms the baselines in both attribute completion tasks, validating the effectiveness of the method.
Key wordsgraph neural network    attribute completion    node classification    bipartite graph    topology of networks
收稿日期: 2025-04-08      出版日期: 2025-06-03
ZTFLH:  TP18  
  O157.5  
基金资助:国家重点研发计划项目(YFC3302600)
通讯作者: 杨伟杰(1980),女,山东潍坊人,副教授,博士,主要研究方向为信息检索与智能信息处理、自然语言处理、复杂系统等。   
作者简介: 韩忠明(1972),男,山西文水人,教授,博士,主要研究方向为计算复杂金融系统、自然语言与情感计算、复杂网络与复杂系统、大数据分析等。
引用本文:   
韩忠明, 张舒群, 刘燕, 胡启文, 杨伟杰. 基于二部联合网络的属性缺失图学习方法[J]. 复杂系统与复杂性科学, 2025, 22(2): 55-63.
HAN Zhongming, ZHANG Shuqun, LIU Yan, HU Qiwen, YANG Weijie. Attribute Missing Graph Learning Method Based on the Structural Joint Bipartite Network[J]. Complex Systems and Complexity Science, 2025, 22(2): 55-63.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.007      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/55
[1] TRAUD A L, MUCHA P J, PORTER M A. Social structure of Facebook networks[J]. Physica A, 2012, 391(16): 41654180.
[2] 王玉,许楠楠,胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 716.
WANG Y, XU N N, HU H B, Characteristics and mechanisms of cross-platform information diffusion in social media[J]. Complex Systems and Complexity Science, 2022, 19(4): 716.
[3] YANG S, ZHANG Z, ZHOU J, et al. Financial risk analysis for SMEs with graph-based supply chain mining[C]//International Joint Conferences on Artificial Intelligence. Freiburg: IJCAI, 2021: 46614667.
[4] 路冠平,李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学,2023,20(1): 3440,65.
LU G P, LI J P. Evolution model the economic lmpact of COVlD19 crisis based on complex network[J]. Complex Systems and Complexity Science, 2023,20(1): 3440,65.
[5] GAINZA P, SVERRISSON F, MONTI F, et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[J]. Nature Methods, 2020, 17: 184192.
[6] 赵文炎,钟诚,田殿雄,等. 基于混合卷积神经网络特征增强的目标识别算法[DB/OL].[20250122]. http://kns.cnki.net/kcms/detail/37.1402.N.20241112.1140.002.html.
ZHAO W Y, ZHONG C, TIAN D X, et al. Target recognition algorithm based on hybrid convolutional neura network feature enhancement[DB/OL].[20250122]. http://kns.cnki.net/kcms/detail/37.1402.N.20241112.1140.002.html.
[7] 吴越, 王英, 王鑫, 等. 基于超图卷积的异质网络半监督节点分类[J]. 计算机学报, 2021, 44(11): 22482260.
WU Y, WANG Y, WANG X, et al. Motif-based hypergraph convolution network for semi-supervised node classification on heterogeneous graph[J]. Chinese Journal of Computers, 2021, 44(11): 22482260.
[8] WANG R, MOU S, WANG X, et al. Graph structure estimation neural networks[C]//The International Conference of World Wide Web. New York: ACM, 2021: 342353.
[9] LIU X, ZHU X, LI M, et al. Multiple kernel k-means with incomplete kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 11911204.
[10] YOON J, JORDON J, SCHAAR M. GAIN: Missing data imputation using generative adversarial nets[C]//International conference on machine learning. New York: ACM, 2018: 56895698.
[11] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//International Conference on Learning Representations. Washington DC: ICLR, 2014.
[12] TAGUCHI H, LIU X, MURATA T. Graph convolutional networks for graphs containing missing features[J]. Future Generation Computer Systems, 2021, 117: 155168.
[13] HUANG X, SONG Q, LI Y, et al. Graph recurrent networks with attributed random walks[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2019: 732740.
[14] BURGETTE L F, REITER J P. Multiple imputation for missing data via sequential regression trees[J]. American Journal of Epidemiology, 2010, 172: 10701076.
[15] KIM K Y, KIM B J, YI G S. Reuse of imputed data in microarray analysis increases imputation efficiency[J]. Bmc Bioinformatics, 2004, 5: 19.
[16] HASTIE T, MAZUMDER R, LEE J D, et al. Matrix completion and low-rank SVD via fast alternating least squares[J]. The Journal of Machine Learning Research, 2015, 16(1): 33673402.
[17] STEKHOVEN D J, BUHLMANN P. MissForest—non-parametric missing value imputation for mixed-type data[J]. Bmc Bioinformatics, 2012, 28(1): 112118.
[18] SPINELLI I, SCARDAPANE S, UNCINI A. Missing data imputation with adversarially-trained graph convolutional networks[J]. Neural Networks, 2020, 129: 249260.
[19] YOU J, MA X, DING Y, et al. Handling missing data with graph representation learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 1907519087.
[20] JIANG B, ZHANG Z. Incomplete graph representation and learning via partial graph neural networks[DB/OL].[20250122]. https://doi.org/10.48550/arXiv.2003.10130.
[21] ROSSI E, KENLAY H, GORINOVA M I, et al. On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features[DB/OL].[20241220]. https://arxiv.org/pdf/2111.12128.
[22] BI W, XU B, SUN X, et al. Predicting the silent majority on graphs: knowledge transferable graph neural network[C]//The International Conference of World Wide Web. New York: ACM, 2023: 274285.
[23] JIANG X, QIN Z, XU J, et al. Incomplete graph learning via attribute-structure decoupled variational auto-encoder[C]//ACM International Conference on Web Search and Data Mining. New York: ACM, 2024:9.
[24] XIA R, ZHANG C, LI A, et al. Attribute imputation autoencoders for attribute-missing graphs[J]. Knowledge-Based Systems, 2024,291: 111583.
[25] TU W, XIAO B, LIU X, et al. Revisiting initializing then refining: an incomplete and missing graph imputation network[J]. IEEE transactions on Neural Networks and Learning Systems, 2024, 36(2): 32443257.
[26] BOJCHEVSKI A, SHCHUR O, ZUGNER D, et al. Netgan: generating graphs via random walks[C]//International Conference on Machine Learning. New York: ICML, 2018: 610619.
[27] ZHANG M, CHEN Y. Inductive matrix completion based on graph neural networks[C]//International Conference on Learning Representations. Washington DC: ICLR, 2019.
[28] RONG Y, HUANG W, XU T, et al. Dropedge: towards deep graph convolutional networks on node classification[C]//International Conference on Learning Representations. Washington DC: ICLR, 2020.
[29] DAI E, WANG S. Say no to the discrimination: learning fair graph neural networks with limited sensitive attribute information[C]//ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 680688.
[30] SIMSEK O, JENSEN D. Navigating networks by using homophily and degree[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 1275812762.
[31] YANG L, LUO L, XIN L,et al. DAGNN: demand-aware graph neural networks for session-based recommendation[C]//ACM Special Interest Group on Information Retrieval. New York: ACM, 2022.
[32] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//International Conference on Machine Learning. Washington DC: ICLR, 2018.
[1] 张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
[2] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[3] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed