A Comparative Study of China and the United States’ Digital Economy Policies Based on Cross-lingual Model
ZOU Yuheng, LU Dongyuan, SANG Dong
1. School of Information Technology and Management, University of International Business and Economics, Beijing 100029, China; 2. NetsUnion Clearing Corporation, Beijing, 100045, China
Abstract:In the context of escalating Sino-American strategic competition, a comparative study of Chinese and the USA digital economy policies bears significant strategic value. Traditional methods of policy comparison are limited by cost, can’t solve this problem well. This paper focuses on the contrast between digital economy policies in China and the USA, proposing a resolution framework based on a cross-language model. The framework initially classifies Sino-American digital economic policies by fine-tuning language models and calculating multilingual similarity, thereby achieving automated comparative analysis of the policy environments. Experiments demonstrate that the proposed method can accurately and efficiently identify and extract policy text features, outperforming baseline methods in accuracy across multiple classification dimensions. Finally, by comparing over 16,000 Sino-American digital economic policy texts, this paper reveals key differences in policy tool usage and the focus of digital economic industry development between the two countries, providing a comprehensive and objective portrayal of the disparities in digital economy policy environments. Concurrently, it also brings a fresh perspective to policy comparison research.
邹雨衡, 路冬媛, 桑栋. 基于跨语言模型的中美数字经济政策对比[J]. 复杂系统与复杂性科学, 2025, 22(2): 82-89.
ZOU Yuheng, LU Dongyuan, SANG Dong. A Comparative Study of China and the United States’ Digital Economy Policies Based on Cross-lingual Model[J]. Complex Systems and Complexity Science, 2025, 22(2): 82-89.
[1] 师博,常青,张良悦.中国数字经济发展的政策演进与理论研究脉络[J]. 技术经济,2022,41(8): 110. SHI B, CHANG Q, ZHANG L Y. The policy evolution and theoretical research context of the development of China′s digital economy[J]. Technology Economics, 2022, 41(8): 110. [2] 徐曼,邓创,刘达禹.数字经济引领经济高质量发展:机制机理与研究展望[J]. 当代经济管理,2023,45(2): 6672. XU M, DENG C, LIU D Y. The digital economy leading the high-quality development of the economy: mechanisms and research prospects[J]. Contemporary Economic Management, 2023, 45(2): 6672. [3] 钟春平,刘诚,李勇坚.中美比较视角下我国数字经济发展的对策建议[J]. 经济纵横,2017(4): 3541. ZHONG C P, LIU C, LI Y J. Countermeasure proposals for the development of China′s digital economy from the Perspective of China-US comparison[J]. Economic Review, 2017(4): 3541. [4] ROTHWELL R, ZEGVELD W. Reindusdalization and technology[J]. Logman Group Limited, 1985,59: 403432. [5] 邱均平,邹菲.国外内容分析法的研究概况及进展[J]. 图书情报知识,2003(6): 68. QIU J P, ZOU F. An overview and progress of the research on content analysis method abroad [J]. Knowledge of Library and Information Science, 2003(6): 68. [6] 王乃钰,叶育鑫,刘露,凤丽洲,包铁,彭涛.基于深度学习的语言模型研究进展[J]. 软件学报,2021,32(4): 10821115. WANG N Y, YE Y X, LIU L, et al. Research progress of language models based on deep learning [J]. Journal of Software, 2021, 32(4): 10821115. [7] CONNEAU A, KHANDELWAL K, GOYAL N, et al. Unsupervised cross-lingual representation learning at scale[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle, 2020: 84408451. [8] PIRES T, SCHLINGER E, GARRETTE D. How multilingual is multilingual BERT?[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, 2019: 49965001. [9] YAN Q, DAVID A, EVANS J G, et al. Mining multilingual options through classification and translation[C]//Proceeding of AAAI. Menlo Park, CA: AAAI, 2004. [10] 刘飒,章成志.多语言文本表示研究综述[J]. 现代图书情报技术,2010(6): 3341. LIU S, ZHANG C Z. A review of research on multilingual text representation [J]. New Technology of Library and Information Service, 2010(6): 3341. [11] 彭晓娅,周栋.跨语言词向量研究综述[J]. 中文信息学报,2020,34(2): 115, 26. PENG X Y, ZHOU D. A review of research on cross-lingual word vectors [J]. Journal of Chinese Information Processing, 2020, 34(2): 115, 26. [12] UPADHYAY S, FARUQUI M, DYER C, et al. Cross-lingual models of word embeddings: an empirical comparison[C]//54th Annual Meeting of the Association for Computational Linguistics, ACL 2016. Association for Computational Linguistics(ACL). Berlin, 2016: 16611670. [13] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations. CoRR abs/1802.05365(2018)[J]. arXiv preprint arXiv:1802.05365, 1802. [14] KENTON J D M W C, TOUTANOVA L K. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of naacL-HLT. Minneapolis, 2019: 41714186. [15] LAMPLE G, CONNEAU A. Cross-lingual language model pretraining[DB/OL].[20241102]. http://arxig.org/abs/1901.07291. [16] LIU Y, OTT M, GOYAL N, et al. Roberta: a robustly optimized bert pretraining approach[DB/OL].[20250312]. https://arxiv.org/pdf/1907.11692. [17] 马文峰.试析内容分析法在社科情报学中的应用[J]. 情报科学,2000(4): 346349. MA W F. An analysis of the application of content analysis method in social science information science [J]. Information Science, 2000(4): 346349. [18] ROTHWELL R O Y, ZEGVELD W. An assessment of government innovation policies[J]. Review of policy research, 1984, 3(3/4): 436444. [19] 李春发,刘焕星,胡培培. 政府分类规制、智能平台赋能与药企CSR策略演化 [J]. 复杂系统与复杂性科学, 2022, 19(2): 1730. LI CF, LIU HX, HU PP. Government classification regulation, intelligent platform empowerment and the evolution of CSR strategies of pharmaceutical enterprises [J]. Complex Systems and Complexity Science, 2022, 19(2): 1730. [20] 单晓红,庞世红,刘晓燕,等. 基于事理图谱的政策影响分析方法及实证研究 [J]. 复杂系统与复杂性科学, 2019, 16(1): 7482. SHAN XH, PANG SH, LIU XY, et al. A method and empirical study on policy impact analysis based on event logic graph [J]. Complex Systems and Complexity Science, 2019, 16(1): 7482. [21] WENZEK G, LACHAUX M A, CONNEAU A, et al. CCNet: extracting high quality monolingual datasets from web crawl data[DB/OL].[20250512]. https://arxiv.org/pdf/1911.00359. [22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[DB/OL].[20241102]. http://arxiv.org/abs/1706.03762v7. [23] 周毅,陈必坤,马江华等. 基于文本量化分析的我国公共数据治理政策发展研究 [J]. 情报学报, 2023, 42(4): 436452. ZHOU Y, CHEN BK, MA JH, et al. Research on the development of China′s public data governance policies based on text quantitative analysis [J]. Journal of The China Society for Scientific and Technical Information, 2023, 42(4): 436452. [24] 李长江.关于数字经济内涵的初步探讨[J]. 电子政务,2017(9): 8492. LI C J. A preliminary exploration of the connotation of the digital economy [J]. E-Government, 2017(9): 8492. [25] SPARCK JONES K. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 1972, 28(1): 1121. [26] LEWIS M, LIU Y, GOYAL N, et al. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[DB/OL].[20250312]. https://arxiv.org/pdf/1910.13461. [27] CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco, 2016: 785794.