Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 97-104    DOI: 10.13306/j.1672-3813.2025.02.012
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于遗传算法的低冗余超图影响力最大化
王志萍a, 赵嘉乐a, 刘凯b, 张海峰a
安徽大学 a.数学科学学院; b. 物质科学与信息技术研究院,合肥 230039
Genetic Algorithm-based Low Redundant Hypergraph Influence Maximization
WANG Zhipinga, ZHAO Jialea, LIU Kaib, ZHANG Haifenga
a. School of Mathematical Sciences; b. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039
全文: PDF(3310 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 超图中的影响力最大化问题在各个领域都具有广泛的应用。现有的方法或是对节点间影响冗余的考虑不够充分,或是仅考虑单一度量对节点初始排序,这导致无法准确刻画节点的真实传播值。为同时充分考虑节点间的影响冗余和节点的真实传播值,本文提出了一种基于遗传算法的低冗余超图影响力最大化方法(LR-HGA),该算法在遗传算法的选择操作和交叉操作中考虑这两点。在6个真实超图网络中,基于超图上定义的SI传播模型进行实验,结果表明,与先进的基准算法相比,该算法得到的种子集整体上具有更广的传播范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志萍
赵嘉乐
刘凯
张海峰
关键词 超图影响力最大化(IM)影响冗余遗传算法(GA)    
Abstract:The influence maximization problem in hypergraphs has wide-ranging applications across various fields. Existing methods either inadequately address the redundancy of influence between nodes or only rely on a single metric for initial node ranking, which may fail to accurately capture the true propagation values of nodes. To simultaneously consider both influence redundancy between nodes and the actual propagation values of nodes, this paper proposes a Low Redundant Hypergraph based on the Genetic Algorithm (LR-HGA), which takes into account these two aspects in the selection and crossover operations of genetic algorithm. Experimental results on six real hypergraph networks using the SI propagation model defined on hypergraphs show that the seed set obtained by this algorithm generally has a wider influence spread compared to state-of-the-art benchmark algorithms.
Key wordshypergraphs    influence maximization (IM)    influence redundancy    genetic algorithm (GA)
收稿日期: 2024-04-11      出版日期: 2025-06-03
ZTFLH:  TP301.5  
  N94  
基金资助:国家自然科学基金(61973001)
通讯作者: 张海峰(1977),男,安徽合肥人,博士,教授,主要研究方向为复杂网络与复杂系统、人工智能及应用。   
作者简介: 王志萍(1998),女,安徽阜阳人,硕士研究生,主要研究方向为复杂网络中的影响力最大化、关键点识别。
引用本文:   
王志萍, 赵嘉乐, 刘凯, 张海峰. 基于遗传算法的低冗余超图影响力最大化[J]. 复杂系统与复杂性科学, 2025, 22(2): 97-104.
WANG Zhiping, ZHAO Jiale, LIU Kai, ZHANG Haifeng. Genetic Algorithm-based Low Redundant Hypergraph Influence Maximization[J]. Complex Systems and Complexity Science, 2025, 22(2): 97-104.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.012      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/97
[1] LI Y C, FAN J, WANG Y H, et al. Influence maximization on social graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(10): 18521872.
[2] LÜL Y, ZHOU T. Link prediction in complex networks: a survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 11501170.
[3] 吴俊, 邓烨, 王志刚, 等. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 113.
WU J, DENG Y, WANG Z G, et al. Status and Prospects on Disintegration of Complex Networks[J]. Complex Systems and Complexity Science, 2022, 19(3): 113.
[4] LIU X M, LI D Q, MA M Q, et al. Network resilience[J]. Physics Reports, 2022, 971: 1108.
[5] WANG Y, LI H, ZHANG L, et al. Identifying influential nodes in social networks: centripetal centrality and seed exclusion approach[J]. Chaos Solitons Fractals, 2022, 162:112513.
[6] GAMBUZZA LV, DI PATTI F, GALLO L, et al. Stability of synchronization in simplicial complexes[J]. Nature Communications, 2021, 12(1): 1255.
[7] ZHANG Y, LUCAS M, BATTISTON F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes[J]. Nature Communications, 2023, 14(1): 1605.
[8] TORRES L, BLEVINS AS, BASSETT D, et al. The why, how, and when of representations for complex systems[J]. SIAM Review, 2021, 63(3): 43585.
[9] CASTELLANO C, FORTUNATO S, LORETO V. Statistical physics of social dynamics[J]. Reviews of Modern Physics, 2009, 81(2): 591.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 3339.
XU Y, LIU X M. Method for identifying critical nodes based on closed triangle motifs[J]. Complex Systems and Complexity Science, 2023, 20(4): 3339.
[11] MA A, RAJKUMAR A. Hyper-IMRANK: ranking-based influence maximization for hypergraphs[DB/OL].[2024-02-02]. https://qiniu.pattern.swarma.org/pdf/arxiv/2006.05645.pdf
[12] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 4046.
WU Y H, LI M D, HU F. A Multi-attribute decision-making method based on entropy to identify important nodes in hypernetworks[J]. Complex Systems and Complexity Science, 2023, 20(4): 4046.
[13] AKTAS M E, JAWAID S, GOKALP I. Influence maximization on hypergraphs via similarity-based diffusion[C]//IEEE International Conference on Data Mining Workshops. Orlando: IEEE, 2022: 11971206.
[14] ZHU J, ZHU J, GHOSH S, et al. Social influence maximization in hypergraph in social networks[J]. IEEE Transactions on Network Science and Engineering, 2018, 6(4): 801811.
[15] ANTELMI A, CORDASCO G, SPAGNUOLO C, et al. Social influence maximization in hypergraphs[J]. Entropy, 2021, 23(7): 796.
[16] XIE M, ZHAN X X, LIU C, et al. An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs[J]. Information Processing & Management, 2023, 60(2): 103161.
[17] XIE M, ZHAN X X, LIU C, et al. A universal meta-heuristic framework for influence maximization in hypergraphs[EB/OL].[20231024]. https://doi.org/10.48550/arXiv.2310.15465.
[18] KING ZA, LU J, DRÄGER A, et al. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models[J]. Nucleic Acids Research, 2016, 44(D1): D515D522.
[19] AMBURG I, VELDT N, BENSON AR. Fair Clustering for Diverse and Experienced Groups[J]. arXiv:2006.05645, 2020.
[20] AMBURG I, VELDT N, BENSON AR. Diverse and experienced group discovery via hypergraph clustering[C]//Proceedings of the 2022 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2022: 145153.
[21] CHODROW PS, VELDT N, BENSON AR. Generative hypergraph clustering: from blockmodels to modularity[J]. Science Advances, 2021, 7(28): eabh1303.
[22] BORGS C, BRAUTBAR M, CHAYES J, et al. Maximizing social influence in nearly optimal time[C]//Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms. Portland: SIMA, 2014: 946957.
[23] MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation[J], Nature, 2015, 524(7563): 6568.
[1] 周宣欣, 吴亚勇, 蒋国平. 两类耦合超图网络状态估计研究[J]. 复杂系统与复杂性科学, 2025, 22(2): 90-96.
[2] 涂贵宇, 潘文林, 张天军. 基于信息熵的超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 18-25.
[3] 张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
[4] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
[5] 周丽娜, 李发旭, 巩云超, 胡枫. 基于K-shell的超网络关键节点识别方法[J]. 复杂系统与复杂性科学, 2021, 18(3): 15-22.
[6] 索琪, 郭进利,. “随机”与“择优”——超网络演化的内在驱动力[J]. 复杂系统与复杂性科学, 2016, 13(4): 51-55.
[7] 索琪, 郭进利, 王福红. 电视节目竞争关系的超网络分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed