Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (3): 34-41    DOI: 10.13306/j.1672-3813.2025.03.005
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电磁激励下Morris-Lecar神经系统的分岔与集群特性研究
王其霞a, 李新颖b, 郭汶卉b
兰州交通大学 a.数理学院;b.电子与信息工程学院,兰州 730070
Bifurcation and Clustering Characteristics of Morris-lecar Neural System Under Electromagnetic Excitation
WANG Qixiaa, LI Xinyingb, GUO Wenhuib
a. School of Mathematics and Physics; b. School of Electronic Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(9753 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 将磁控忆阻器引入Morris-Lecar神经系统中描述由磁通引起的感应电流,探究忆阻参数对系统动力学特性的影响。根据电荷与磁通的关系建立忆阻Morris-Lecar神经元模型,对系统的放电模式进行数值仿真,利用相似函数研究耦合系统的同步转迁过程,得出电耦合强度和忆阻参数对系统的同步状态具有调控作用。构建一个非对称局部耦合忆阻神经网络模型,利用时空动态图研究耦合强度对神经网络嵌合态存在性的影响,可进一步揭示复杂神经网络系统的信息编码和传递过程的内在机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王其霞
李新颖
郭汶卉
关键词 磁控忆阻器平衡点分析双参数分析相似函数嵌合态    
Abstract:Magnetronic memristor is introduced into the Morris-Lecar neural system to describe the induced current induced by magnetic flux, and the effect of memristor parameters on the dynamical characteristics of the system is explored. Based on the relationship between charge and magnetic flux, a memristive Morris-Lecar neuron model is established, the discharge patterns of the system are numerically simulated, and the synchronization transition process of the coupled system is researched by using the similarity function, and it is concluded that the strength of the electric coupling and the memristor parameters have a modulating effect on the synchronization state of the system. An asymmetric locally coupled memristive neural network model is constructed, and the effect of coupling strength on the existence of neural network embedded states is researched by using spatio-temporal dynamical diagrams, which further reveals the intrinsic mechanism of the information encoding and transmission process of complex neural network systems.
Key wordsmagnetron memristor    equilibrium point analysis    two-parameter analysis    similarity function    chimeric state
收稿日期: 2023-11-20      出版日期: 2025-10-09
ZTFLH:  O193  
  O441  
基金资助:国家自然科学基金(12172157,12362003);甘肃省重点研发计划项目(23YFWA0007);甘肃省自然科学基金(23JRRA892;24JRRA243);甘肃省自然科学基金重点项目(23JRRA860)
通讯作者: 李新颖(1978-),女,甘肃平凉人,硕士,副教授,主要研究方向为混沌与保密通信,复杂神经元网络建模与分析。   
作者简介: 王其霞(1997-),女,山西大同人,硕士研究生,主要研究方向为非线性动力学。
引用本文:   
王其霞, 李新颖, 郭汶卉. 电磁激励下Morris-Lecar神经系统的分岔与集群特性研究[J]. 复杂系统与复杂性科学, 2025, 22(3): 34-41.
WANG Qixia, LI Xinying, GUO Wenhui. Bifurcation and Clustering Characteristics of Morris-lecar Neural System Under Electromagnetic Excitation[J]. Complex Systems and Complexity Science, 2025, 22(3): 34-41.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.03.005      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I3/34
[1] 王青云,石霞,陆启韶. 神经元耦合系统的同步动力学[M]. 北京: 科学出版社, 2008: 1-10.
[2] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500.
[3] MORRIS C, LECAR H. Voltage oscillations in the barnacle giant muscle fiber[J]. Biophysical Journal, 1981, 35(1): 193-213.
[4] HINDMARSH J L, ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853): 162-164.
[5] CHAY T R. Chaos in a three-variable model of an excitable cell[J]. Physica D: Nonlinear Phenomena, 1985, 16(2): 233-242.
[6] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
[7] BAO H, HU A, LIU W, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(2): 502-511.
[8] ZHANG G, WU F, HAYAT T, et al. Selection of spatial pattern on resonant network of coupled memristor and Josephson junction[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 65: 79-90.
[9] 王梦蛟,邓勇,李志军,等.基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现[J]. 电子与信息学报, 2020, 42(4): 818-826.
WANG M J, DENG Y, LI Z J, et al. Clustering and coexistence analysis of duffing systems based on hyperbolic tangential memristor and its DSP implementation[J]. Journal of Electronics and Information, 2020, 42(4): 818-826.
[10] TAN Y, WANG C. A simple locally active memristor and its application in HR neurons[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2020, 30(5): 053118.
[11] 高月月,李新颖,李宁.电磁感应下Chay神经元的放电分岔特性与同步[J].山东大学学报(理学版), 2021, 56(1): 43-51,59.
GAO Y Y, LI X Y, LI N. Bifurcation characteristics and synchronization of Chay neurons under electromagnetic induction[J]. Journal of Shandong University (Science Edition), 2021, 56(1): 43-51,59.
[12] RAJAGOPAL K, JAFARI S, LI C, et al. Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling[J]. Chaos, Solitons & Fractals, 2021, 146: 110855.
[13] ABRAMS D M, STROGATZ S H. Chimera states for coupled oscillators[J]. Physical Review Letters, 2004, 93(17): 174102.
[14] MAJHI S, PERC M, GHOSH D. Chimera states in a multilayer network of coupled and uncoupled neurons[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2017, 27(7): 073109.
[15] FANG T, ZHANG J, HUANG S, et al. Synchronous behavior among different regions of the neural system induced by electromagnetic radiation[J]. Nonlinear Dynamics, 2019, 98: 1267-1274.
[16] AGHABABAEI S, BALARAMAN S, RAJAGOPAL K, et al. Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network[J]. Chaos, Solitons & Fractals, 2021, 153: 111498.
[17] EICHLER S A, MEIER J C. EI balance and human diseases-from molecules to networking[J]. Frontiers in Molecular Neuroscience, 2008, 1: 195.
[18] FAN D G, WANG Q Y. Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J]. Science China Technological Sciences, 2017, 60: 1019-1031.
[19] YUAN Y Y, YANG H, HAN F, et al. Traveling chimera states in locally coupled memristive Hindmarsh-Rose neuronal networks and circuit simulation[J]. Science China Technological Sciences, 2022, 65(7): 1445-1455.
[20] LIU Y, SUN Z, YANG X, et al. Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons[J]. Applied Mathematics and Computation, 2021, 409: 126384.
[1] 王敬伟. 一类振荡器的无穷多共存吸引子复杂Wada域分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 48-52.
[2] 仓诗建,吴爱国,王忠林,薛薇. 一个广义Hamilton系统的混沌特性及电路实现[J]. 复杂系统与复杂性科学, 2017, 14(1): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed