Abstract:Magnetronic memristor is introduced into the Morris-Lecar neural system to describe the induced current induced by magnetic flux, and the effect of memristor parameters on the dynamical characteristics of the system is explored. Based on the relationship between charge and magnetic flux, a memristive Morris-Lecar neuron model is established, the discharge patterns of the system are numerically simulated, and the synchronization transition process of the coupled system is researched by using the similarity function, and it is concluded that the strength of the electric coupling and the memristor parameters have a modulating effect on the synchronization state of the system. An asymmetric locally coupled memristive neural network model is constructed, and the effect of coupling strength on the existence of neural network embedded states is researched by using spatio-temporal dynamical diagrams, which further reveals the intrinsic mechanism of the information encoding and transmission process of complex neural network systems.
王其霞, 李新颖, 郭汶卉. 电磁激励下Morris-Lecar神经系统的分岔与集群特性研究[J]. 复杂系统与复杂性科学, 2025, 22(3): 34-41.
WANG Qixia, LI Xinying, GUO Wenhui. Bifurcation and Clustering Characteristics of Morris-lecar Neural System Under Electromagnetic Excitation[J]. Complex Systems and Complexity Science, 2025, 22(3): 34-41.
[1] 王青云,石霞,陆启韶. 神经元耦合系统的同步动力学[M]. 北京: 科学出版社, 2008: 1-10. [2] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500. [3] MORRIS C, LECAR H. Voltage oscillations in the barnacle giant muscle fiber[J]. Biophysical Journal, 1981, 35(1): 193-213. [4] HINDMARSH J L, ROSE R M. A model of the nerve impulse using two first-order differential equations[J]. Nature, 1982, 296(5853): 162-164. [5] CHAY T R. Chaos in a three-variable model of an excitable cell[J]. Physica D: Nonlinear Phenomena, 1985, 16(2): 233-242. [6] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519. [7] BAO H, HU A, LIU W, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(2): 502-511. [8] ZHANG G, WU F, HAYAT T, et al. Selection of spatial pattern on resonant network of coupled memristor and Josephson junction[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 65: 79-90. [9] 王梦蛟,邓勇,李志军,等.基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现[J]. 电子与信息学报, 2020, 42(4): 818-826. WANG M J, DENG Y, LI Z J, et al. Clustering and coexistence analysis of duffing systems based on hyperbolic tangential memristor and its DSP implementation[J]. Journal of Electronics and Information, 2020, 42(4): 818-826. [10] TAN Y, WANG C. A simple locally active memristor and its application in HR neurons[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2020, 30(5): 053118. [11] 高月月,李新颖,李宁.电磁感应下Chay神经元的放电分岔特性与同步[J].山东大学学报(理学版), 2021, 56(1): 43-51,59. GAO Y Y, LI X Y, LI N. Bifurcation characteristics and synchronization of Chay neurons under electromagnetic induction[J]. Journal of Shandong University (Science Edition), 2021, 56(1): 43-51,59. [12] RAJAGOPAL K, JAFARI S, LI C, et al. Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling[J]. Chaos, Solitons & Fractals, 2021, 146: 110855. [13] ABRAMS D M, STROGATZ S H. Chimera states for coupled oscillators[J]. Physical Review Letters, 2004, 93(17): 174102. [14] MAJHI S, PERC M, GHOSH D. Chimera states in a multilayer network of coupled and uncoupled neurons[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2017, 27(7): 073109. [15] FANG T, ZHANG J, HUANG S, et al. Synchronous behavior among different regions of the neural system induced by electromagnetic radiation[J]. Nonlinear Dynamics, 2019, 98: 1267-1274. [16] AGHABABAEI S, BALARAMAN S, RAJAGOPAL K, et al. Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network[J]. Chaos, Solitons & Fractals, 2021, 153: 111498. [17] EICHLER S A, MEIER J C. EI balance and human diseases-from molecules to networking[J]. Frontiers in Molecular Neuroscience, 2008, 1: 195. [18] FAN D G, WANG Q Y. Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J]. Science China Technological Sciences, 2017, 60: 1019-1031. [19] YUAN Y Y, YANG H, HAN F, et al. Traveling chimera states in locally coupled memristive Hindmarsh-Rose neuronal networks and circuit simulation[J]. Science China Technological Sciences, 2022, 65(7): 1445-1455. [20] LIU Y, SUN Z, YANG X, et al. Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons[J]. Applied Mathematics and Computation, 2021, 409: 126384.