Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 64-71    DOI: 10.13306/j.1672-3813.2022.04.009
  本期目录 | 过刊浏览 | 高级检索 |
可调数目吸引子共存的混沌系统及同步控制
颜闽秀a,b, 谢俊红b
沈阳化工大学 a.信息工程学院; b.工业环境资源协同控制与优化技术辽宁省高校重点实验室,沈阳 110142
Chaotic Systems with Adjustable Attractors and Their Synchronization Control
YAN Minxiua,b, XIE Junhongb
a. College of Information Engineering; b. Key Laboratory for Industrial Environment-Resources Cooperative Control and OptimizationTechnology (University of Liaoning Province), Shenyang University of Chemical Technology, Shenyang 110142, China
全文: PDF(1107 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 混沌系统中的吸引子共存能够增强在同步通信中的安全性,因此建立一个具有吸引子共存的混沌系是有意义的。将双曲正切函数加入新混沌系统中,通过扩展系统平衡点的方法产生具有无限多吸引子的共存,该方法产生的吸引子个数具有可调性。此外,设计了反馈控制律,实现了系统的全局同步控制。理论研究和数值模拟仿真结果验证了该同步方法的有效性。具有可调数目的吸引子共存的混沌系统具有更为复杂的动态行为,因此在同步通信领域具有较好的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜闽秀
谢俊红
关键词 混沌系统双曲正切函数可调数目吸引子共存同步控制    
Abstract:The coexistence of attractors in chaotic systems can enhance the security of synchronous communication. Therefore, it is meaningful to establish a chaotic system with the coexistence of attractors. The hyperbolic tangent function is added to the new chaotic system, and the coexistence with infinite attractors is generated by expanding the equilibrium point of the system. The number of attractors generated by this method is adjustable. In addition, the global feedback control law is designed to realize the synchronization of the system. Theoretical research and numerical simulation results verify the effectiveness of the synchronization method. The chaotic system with adjustable attractors has more complex dynamic behavior, so it has good application value in the field of synchronous communication.
Key wordschaotic system    hyperbolic tangent function    adjustable number attractors coexisting    synchronization control
收稿日期: 2021-07-26      出版日期: 2023-01-09
ZTFLH:  O415.5  
  TP15  
基金资助:中国北马其顿政府间科技合作项目 (国科外[2019]22:68)
作者简介: 颜闽秀(1972),女,福建仙游人,博士,副教授,主要研究方向为复杂混沌系统控制。
引用本文:   
颜闽秀, 谢俊红. 可调数目吸引子共存的混沌系统及同步控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 64-71.
YAN Minxiu, XIE Junhong. Chaotic Systems with Adjustable Attractors and Their Synchronization Control. Complex Systems and Complexity Science, 2022, 19(4): 64-71.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.009      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/64
[1] NJITACKE Z, KENGNE J, FOTSIN H. A plethora of behaviors in a memristor based Hopfield neural networks (HNNs)[J]. International Journal of Dynamics & Control, 2018, 7(1):3652.
[2] LIU Z X, YOU C, WANG B, et al. Phase-mediated magnon chaos-order transition in cavity optomagnonics[J]. Optics Letters, 2019, 44(3):507510.
[3] MUTHUSWAMY B, CHUA L O. Simplest chaotic circuit[J]. International Journal of Bifurcation & Chaos, 2010, 20(5): 15671580.
[4] NJITACKE Z T, KENGNE J, KENGNE L K. Ant monotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit[J]. Chaos Solitons & Fractals, 2017, 105(1):7791.
[5] YAN M, XU H. A chaotic system with a nonlinear term and multiple coexistence attractors[J]. European Physical Journal Plus, 2020, 135(6): 19.
[6] LAI Q. Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria[J]. Chaos, Solitons and Fractals: Applications in Science and Engineering: An Interdisciplinary Journal of Nonlinear Science, 2018, 107(1):92102.
[7] SPROTT J. Some simple chaotic flows[J]. Physical review. Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994, 50(2): 647650.
[8] SLIMANE N B, BOUALLEGUE K, MACHHOUT M. Designing a multi-scroll chaotic system by operating logistic map with fractal process[J]. Nonlinear Dynamics, 2017, 88(3):121.
[9] JAFARI S, SPROTT J. Simple chaotic flows with a line equilibrium[J]. Chaos, Solitons & Fractals, 2013, 57(4): 7984.
[10] GOTTHANS T, PETRELA J. New class of chaotic systems with circular equilibrium[J]. Nonlinear Dynamics, 2015, 81(3):17.
[11] SPROTT J C, JAFARI S. A chaotic system with a single unstable node[J]. Physics Letters A, 2015, 379(36):3036.
[12] LI C, SPROTT J C. Multistability in the lorenz system: a broken butterfly[J]. International Journal of Bifurcation & Chaos in Applied Sciences & Engineering, 2014, 24(10):131137.
[13] LI C, SPROTT J, XING H. Constructing chaotic systems with conditional symmetry[J]. Nonlinear Dynamics, 2017, 87(2):18.
[14] LEUTCHO G D, KENGNE J, KENGNE L K. Dynamical analysis of a novel autonomous 4D hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors[J]. Chaos Solitons & Fractals, 2018, 107(1):6787.
[15] BAO B C, WU P Y, BAO H, et al. Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator[J]. Chaos, Solitons & Fractals, 2018, 109(1):146153.
[16] BAO B, XU L, WU Z, et al. Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua's circuit[J]. International Journal of Electronics, 2018, 228(10): 11591169.
[17] LI C, ZHOU Y, YANG Y, et al. Complicated dynamics in a memristor-based RLC circuit[J]. The European Physical Journal Special Topics, 2019, 228(10):19251941.
[18] LI C L, LI Z Y, FENG W, et al. Dynamical behavior and image encryption application of a memristor-based circuit system[J]. International Journal of Electronics and Communications, 2019, 110(1):121.
[19] VAIDYANATHAN S, SAMBAS A, AZAR A T, et al. A new 5-D hyperchaotic four-wing system with multistability and hidden attractor, its backstepping control, and circuit simulation[J]. Backstepping Control of Nonlinear Dynamical Systems, 2021:1(1):117.
[20] SAMBASA A, VAIDYANATHANB S, ZHANG S, et al. A new 4-D chaotic hyperjerk system with coexisting attractors, its active backstepping control, and circuit realization[J]. Backstepping Control of Nonlinear Dynamical Systems, 2021,1(1):7394.
[1] 闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
[2] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[3] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed