Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 99-106    DOI: 10.13306/j.1672-3813.2022.04.013
  本期目录 | 过刊浏览 | 高级检索 |
离散事件系统中的攻击检测和修复
闫安, 宋运忠
河南理工大学电气工程与自动化学院,河南 焦作 454000
Attack Detection and Repair in Discrete Event Systems
YAN An, SONG Yunzhong
College of Electrical Engineering & Automation, Henan Polytechnic University,Jiaozuo 454000,China
全文: PDF(1410 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究离散事件系统中的入侵检测,防御和修复问题,采用形式语言与自动机的方法对一个受到执行器启动攻击的系统进行建模。首先,采用一种诊断器算法对该模型进行分析,判断其在受到攻击后的安全性。之后,基于此提出了一种算法,使系统在受到攻击后不满足安全性时修复系统,使其满足系统安全性的要求。最后,通过一个交通系统验证了该方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫安
宋运忠
关键词 离散事件系统安全可控性网络攻击诊断器    
Abstract:This paper mainly studies the problem of intrusion detection, prevention and repair in discrete event systems. In this paper, we use formal language and automata to model a system that is under actuator-enablement attack. In this paper, we use formal language and automata to model a system that is under actuator-enablement attack.First, this paper uses a diagnoser algorithm to analyze the model and judge its safety after being attacked. Then, based on this, an algorithm is proposed to repair the system when it is not safe after being attacked, so that it can meet the requirements of system safety. Finally, the effectiveness of this method is verified by a traffic system.
Key wordsdiscrete-event systems    safe controllability    cyber attack    diagnoser
收稿日期: 2021-07-21      出版日期: 2023-01-09
ZTFLH:  TP12  
基金资助:国家自然科学基金(61340041,61374079);河南省自然科学基金(182300410112)
通讯作者: 宋运忠(1968),男,河南民权人,教授,博士,主要研究方向为复杂系统分析与控制。   
作者简介: 闫安(1993),男,河南焦作人,硕士,主要研究方向为复杂系统建模与仿真。
引用本文:   
闫安, 宋运忠. 离散事件系统中的攻击检测和修复[J]. 复杂系统与复杂性科学, 2022, 19(4): 99-106.
YAN An, SONG Yunzhong. Attack Detection and Repair in Discrete Event Systems. Complex Systems and Complexity Science, 2022, 19(4): 99-106.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.013      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/99
[1] BANERJEE A, VENKATASUBRAMANIAN K K, MUKHERJEE T, et al. Ensuring safety, security, and sustainability of mission-critical cyber-physical systems[J]. Proceedings of the IEEE, 2011, 100(1): 283299.
[2] CARDENAS A A, AMIN S, SASTRY S. Secure control: towards survivable cyber-physical systems[C]//2008 The 28th International Conference on Distributed Computing Systems Workshops. Beijing: IEEE, 2008: 495500.
[3] ZHOU C V, LECKIE C, KARUNASEKERA S. A survey of coordinated attacks and collaborative intrusion detection[J]. Computers & Security, 2010, 29(1): 124140.
[4] SABAHI F, MOVAGHAR A . Intrusion detection: a survey[C]//International Conference on Systems & Networks Communications. Sliema:IEEE, 2008:2326.
[5] MODI C, PATEL D, BORISANIYA B, et al. A survey of intrusion detection techniques in cloud[J]. Journal of Network and Computer Applications, 2013, 36(1): 4257.
[6] Thorsley D, Teneketzis D. Intrusion detection in controlled discrete event systems[C]//Proceedings of the 45th IEEE Conference on Decision and Control. San Diego: IEEE, 2006: 60476054.
[7] MOOR T. Fault-tolerant supervisory control[J]. IFAC Papers On Line, 2015, 48(7): 124131.
[8] WEN Q, KUMAR R, HUANG J. Framework for optimal fault-tolerant control synthesis: Maximize prefault while minimize post-fault behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 44(8): 10561066.
[9] ROHLOFF K R. Sensor failure tolerant supervisory control[C]//Proceedings of the 44th IEEE Conference on Decision and Control. Seville: IEEE, 2005: 34933498.
[10] SÜLEK A N, SCHMIDT K W. Computation of supervisors for fault-recovery and repair for discrete event systems[J]. IFAC Proceedings Volumes, 2014, 47(2): 428433.
[11] CARVALHO L K, WU Y C, KWONG R, et al. Detection and mitigation of classes of attacks in supervisory control systems[J]. Automatica, 2018, 97: 121133.
[12] RAMADGE P J G, WONHAM W M. The control of discrete event systems[J]. Proceedings of the IEEE, 1989, 77(1): 8198.
[13] WONHAM W M, CAI K. Supervisory Control of Discrete-Event Systems[M]. USA: Springer, 2019.
[14] CARVALHO L K, BASILIO J C, MOREIRA M V. Robust diagnosis of discrete event systems against intermittent loss of observations[J]. Automatica, 2012, 48(9): 20682078.
[15] ALVES M V S, BASILIO J C, DA CUNHA A E C, et al. Robust supervisory control against intermittent loss of observations[J]. IFAC Proceedings Volumes, 2014, 47(2): 294299.
[16] PAOLI A, SARTINI M, LAFORTUNE S. Active fault tolerant control of discrete event systems using online diagnostics[J]. Automatica, 2011, 47(4): 639649.
[17] SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Diagnosability of discrete-event systems[J]. IEEE Transactions on Automatic Control, 1995, 40(9): 15551575.
[18] CHRISTOS G. CASSANDRAS, LAFORTUNE S. Introduction to Discrete Event Systems[M]. USA: Springer, 2008.
[19] YOO T S, LAFORTUNE S. Polynomial-time verification of diagnosability of partially observed discrete-event systems[J]. IEEE Transactions on Automatic Control, 2002, 47(9): 14911495.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed