Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (1): 27-33    DOI: 10.13306/j.1672-3813.2023.01.004
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的新冠病毒群体免疫数值仿真
王佳亮1a, 李海滨1, 李海燕2
1.内蒙古工业大学 a.理学院; b.工程训练教学部,呼和浩特 010051;
2.内蒙古医科大学第一附属医院内分泌科,呼和浩特 010010
Numerical Simulation of the COVID-19 Herd Immunity Based on Complex Network Modeling
WANG Jialiang1a, LI Haibin1, LI Haiyan2
1. a. College of Sciences; b. Engineering Training Center of Inner Mongolia University of Technology, Hohhot 010051, China;
2. Department of Endocrinology the First Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China
全文: PDF(1897 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于构建流行病动力学模型、探索流行病传播规律对疫情防控具有十分重要的理论意义和实际应用价值,在已有的均匀混合模型基础上,针对个体接触关系异质化越发明显,且每个个体都处在不同的接触关系中,建立了兼顾个体状态与接触追踪的动态小世界网络模型。模拟了新冠病毒在社会中的传播过程。通过对比仿真结果,说明了所建模型的合理性。在此基础上,仿真计算了网络拓扑结构与接种免疫人数占比共同作用下对新冠病毒传播的影响,分析得到群体免疫临界值。说明所建传播模型合理,接种疫苗实现群体免疫可行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王佳亮
李海滨
李海燕
关键词 小世界网络动力学建模新冠病毒群体免疫    
Abstract:Constructing an epidemic dynamic model and exploring the spreading law of epidemic have very important theoretical significance for epidemic prevention and control. Based on the existing homogeneous mixing model, in view of the increasingly obvious heterogeneity of individual contact relationships, and each individual is in a different contact relationship, a dynamic small-world network model that takes into account individual status. Contact tracking has been established to simulate the spread of the COVID-19 in society. By comparing the simulation results, the rationality of the built model is explained. On this basis, the simulation calculated the impact of the network topology and the proportion of vaccinated people on the spread of the COVID-19, analyzed the critical value of herd immunity. The established propagation model is reasonable, and feasible to achieve herd immunization by vaccination.
Key wordssmall world network    dynamic modeling    COVID-19    herd immunity
收稿日期: 2021-09-06      出版日期: 2023-04-19
ZTFLH:  TP391.9  
基金资助:国家自然科学基金(11962021)
通讯作者: 李海滨(1973),男,内蒙古呼和浩特人,博士,教授,主要研究方向为结构不确定性分析与量化、神经网络计算、六维力传感器设计。
李海燕(1980),女,内蒙古呼和浩特人,本科,副主任护师,主要研究方向为内分泌疾病与糖足的临床护理。   
作者简介: 王佳亮(1996),男,内蒙古赤峰人,硕士研究生,主要研究方向为系统动力学建模与仿真。
引用本文:   
王佳亮, 李海滨, 李海燕. 基于复杂网络的新冠病毒群体免疫数值仿真[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
WANG Jialiang, LI Haibin, LI Haiyan. Numerical Simulation of the COVID-19 Herd Immunity Based on Complex Network Modeling. Complex Systems and Complexity Science, 2023, 20(1): 27-33.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.01.004      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I1/27
[1] SARKAR A, LIU G, JIN Y, et al. Public health preparedness and responses to the coronavirus disease 2019(COVID-19) pandemic in South Asia: a situation and policy analysis[J]. Glob Health J, 2020, 4(4): 121132.
[2] FANG Y Q, NIE Y T, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: a data-driven analysis[J]. Journal of medical virology, 2020, 92(6): 645659.
[3] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369374.
FAN R G, WANG Y B, LUO M, et al. SEIR-based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 369374.
[4] YANG Z, ZENG Z, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165174.
[5] GU B R. Forecast and analysis of COVID-19 epidemic based on improved SEIR model[J]. Journal of Physics:Conference Series, 2021, 1802(4): 042050.
[6] MWALILI S, KIMATHI M, OJIAMBO V, et al. SEIR model for COVID-19 dynamics incorporating the environment and social distancing[J]. BMC Research Notes, 2020, 13(1): 15.
[7] 杨洪勇, 张嗣瀛. 基于复杂网络的禽流感病毒传播[J]. 系统仿真学报, 2008, 20(18): 5155.
YANG H Y, ZHANG S Y. Viruses epidemics of avian influenza based on complex networks[J]. Journal of System Simulation, 2008, 20(18): 5155.
[8] 程静, 黄青, 谢铭杰, 等. 小世界网络中埃博拉病毒传播的研究[J]. 生物医学工程学进展, 2015, 36(2): 9194.
CHENG J, HUANG Q, XIE M J, et al. Study on the transmission of ebola virus in small world network[J]. Advances in Biomedical Engineering, 2015, 36(2): 9194.
[9] 刘汉卿, 康晓东, 高万春, 等. 基于多模型的COVID19传播研究[J]. 计算机科学, 2021, 48(6): 196202.
LIU H Q, KANG X D, GAO W C, et al. Research on propagation of COVID-19 based on multiple models[J]. Computer Science, 2021, 48(6): 196202.
[10] LI Z, CHEN Q, FENG L, et al. Active case finding with case management: the key to tackling the COVID-19 pandemic[J]. The Lancet, 2020, 396(10243): 6370.
[11] 国药集团. 国药集团中国生物新冠灭活疫苗获批附条件上市[EB/OL].[20210302]. http://www.sinopharm.com/s/1223412638840.html.
SINOPHARM. Sinopharm China biotech covid-19 inactivated vaccine approved for conditional listing[EB/OL].[20210302]. http://www.sinopharm.com/s/1223412638840.html.
[12] FINE P, EAMES K, HEYMANND D L. "Herd immunity" : a rough guide[J]. Clinical Infectious Diseases, 2011, 52(7): 911916.
[13] 吴丹, 郑徽, 李艺星, 等. 群体免疫及其对传染病防控的意义[J]. 中国疫苗和免疫, 2020, 26(4): 123127.
WU D, ZHENG H, LI Y X, et al. Herd immunity and its importance in infectious disease prevention and control[J]. Chinese Journal of Vaccines and Immunization, 2020, 26(4): 123127.
[14] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684): 440442.
[15] 李海滨. 基于社会分工的流行病动力学建模与仿真研究[J]. 系统仿真学报, 2020, 32(5): 745758.
LI H B. Modeling and simulation on dynamics of epidemic disease based on social division of labor[J]. Journal of System Simulation, 2020, 32(5): 745758.
[16] XI H, ERIC H, LAU Y, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19[J]. Nature Medicine, 2020, 26(5): 672675.
[17] 李海滨, 王佳亮, 李海燕. 新冠后疫情时代复学风险评估的不确定性量化分析[J]. 系统仿真学报, 2021, 33(1): 1323.
LI H B, WANG J L, LI H Y.Uncertainty quantitative analysis in risk assessment of returning to school in the post-COVID-19 era[J]. Journal of System Simulation, 2021, 33(1): 1323.
[18] 邱明, 悦胡涛, 崔恒建. 双区间删失下新冠病毒肺炎潜伏期分布的参数估计[J]. 应用数学学报, 2020, 43(2): 200210.
QIU M, YUE H T, CUI H J. Parameter estimation of incubation period distribution of new coronavirus pneumonia under double interval censoring[J]. Journal of Applied Mathematics, 2020, 43(2): 200210.
[19] 汪小帆. 复杂网络理论及其应用[M]. 北京:清华大学出版社, 2006.
[20] 王志心, 刘治, 刘兆军. 基于机器学习的新型冠状病毒(COVID19)疫情分析及预测[J]. 生物医学工程研究, 2020, 39(1): 15.
WANG Z X, LIU Z, LIU Z J. COVID-19 analysis and forecast based on machine learning[J]. Journal of Biomedical Engineering Research, 2020, 39(1): 15.
[1] 张梦真, 王庆芝, 刘其朋. 基于层次化可导航小世界网络改进的SeqSLAM算法[J]. 复杂系统与复杂性科学, 2023, 20(1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed