Abstract:Aiming at the initial instability of the existing traffic cellular automata model and the initial fluctuation of data output for a long time, a new traffic flow initialization method is designed based on the principle of Fisher-Yates algorithm. This method can ensure the randomness of the location and update timing of the vehicle from entering the cell space to the subsequent evolution and update. Through the evolution experiment of the model using the new traffic flow initialization method, the results show that the initial fluctuation range is within 50 steps under the condition of arbitrary space occupancy; When the evolution update reaches 3600 steps, the output data of the model after excluding the output of the initial fluctuation interval has converged enough, and the operation of the model is stable enough.
邓建华, 冯焕焕, 葛婷. 初始化对交通元胞自动机模型稳定性的影响[J]. 复杂系统与复杂性科学, 2023, 20(2): 105-110.
DENG Jianhua, FENG Huanhuan, GE Ting. Influence of the Initialization Method on the Stability of Traffic Cellular Automata Model. Complex Systems and Complexity Science, 2023, 20(2): 105-110.
[1] FOURRATE K, LOULIDI M. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality [J]. Eur Phys J B, 2006, 49(2): 239-246. [2] NASHINARI K, FUKV M, SCHADSCHNEIDER A. A stochastic cellular automaton model for traffic flow with multiple metastable states[J]. Journal of Physics A: Mathematical and General, 2004, 37(9): 3101-3110. [3] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic [J]. Journal De Physique I, 1992, 2(12): 2221-2229. [4] 贾斌, 高自友, 李克平, 等. 基于元胞自动机的交通系统建模与模拟 [M]. 北京: 科学出版社, 2007:70-97. [5] 谭惠丽, 刘慕仁, 孔令江. 开放边界条件下改进的Nagel-Schreckenberg交通流模型的研究 [J]. 物理学报, 2002, 51(12): 2713-2718. TAN H L, LIU M R, KONG L J. A study on an improved nagel-schreckenberg traffic flow model with open boundary conditions [J]. Acta Phys Sin, 2002, 51(12): 2713-2718. [6] TIAN J F, JIA B, LI X G, et al. A new car-following model considering velocity anticipation [J]. Chinese Physics B, 2010, 19(1): 197-203. [7] NAGATANI T. Clustering of cars in cellular-automaton model of freeway traffic [J]. J Phys Soc Jpn, 1993, 62(11): 3837-3840. [8] EMMERICH H, RANK E. An improved cellular automaton model for traffic flow simulation [J]. Physica A, 1997, 234(3/4): 676-686. [9] DONG L Y, XUE Y, DAI S Q. One-dimensional cellular automaton model of traffic flow based on car-following idea [J]. Appl Math Mech-Engl, 2002, 23(4): 363-370. [10] LI L, YU X, DAI S Q. One-dimensional sensitive driving cellular automaton model for traffic flow [J]. Acta Physica Sinica, 2003, 52(9): 2121-2126. [11] RICKERT M, NAGEL K, SCHRECKENBERG M, et al. Two lane traffic simulations using cellular automata [J]. Physica A, 1996, 231(4): 534-550. [12] DAOUDIA A K, MOUSSA N. Numerical simulations of a three-lane traffic model using cellular automata [J]. Chinese J Phys, 2003, 41(6): 671-681. [13] KUKIDA S, TANIMOTO J, HAGISHIMA A. Analysis of the influence of lane changing on traffic-flow dynamics based on the cellular automaton model [J]. International Journal of Modern Physics C, 2011, 22(3): 271-281. [14] 敬明, 邓卫, 王昊, 等. 基于跟车行为的双车道交通流元胞自动机模型 [J]. 物理学报, 2012, 61(24): 244502. JING M, DENG W, WANG H, et al. Two-lane cellular automaton traffic model based on car following behavior [J]. Acta Phys Sin, 2012, 61(24): 244502. [15] ZHENG Z D. Recent developments and research needs in modeling lane changing [J]. Transportation Research Part B-Methodological, 2014, 60(13): 16-32. [16] LI H X, SHAO C F, WU H L, et al. Cellular automata approach for modeling lane changing execution [J]. J Cell Autom, 2016, 11(4): 339-350. [17] 邓建华, 冯焕焕, 葛婷. 多车道元胞自动机换道决策模型的冲突处理策略 [J]. 交通运输系统工程与信息, 2019, 19(4): 50-54. DENG J H, FENG H H, GE T. Conflict handling strategies of lane-changing decision model of multi-lane cellular automata [J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 50-54. [18] WOLFRAM S. Universality and complexity in cellular automata [J]. Physica D: Nonlinear Phenomena, 1984, 10(1): 1-35. [19] PRODINGER H. On the analysis of an algorithm to generate a random cyclic permutation [J]. Ars Combinatoria, 2002, 65(1): 75-78. [20] DENG J H, FENG H H. A multilane cellular automaton multi-attribute lane-changing decision model [J]. Physica A: Statistical Mechanics and its Applications, 2019, 529: 121545. [21] 邱小平, 于丹, 孙若晓, 等. 基于安全距离的元胞自动机交通流模型研究 [J]. 交通运输系统工程与信息, 2015, 15(2): 54-60. QIU X P, YU D, SUN R X, et al. Cellular automata model based on safety distance [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 54-60. [22] 梁经韵, 张莉莉, 栾悉道, 等. 多路段元胞自动机交通流模型 [J]. 物理学报, 2017, 66(19): 194501. LIANG J Y, ZHANG L L, LUAN X D, et al. Multi-section cellular automata model of traffic flow [J]. Acta Phys Sin, 2017, 66(19): 194501. [23] 冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型 [J]. 交通运输系统工程与信息, 2020, 20(2): 139-144. FENG H H, DENG J H, GE T. Multi-attributes lane-changing decision model based on entropy weight with driving styles [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 139-144.