Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 105-110    DOI: 10.13306/j.1672-3813.2023.02.014
  本期目录 | 过刊浏览 | 高级检索 |
初始化对交通元胞自动机模型稳定性的影响
邓建华, 冯焕焕, 葛婷
苏州科技大学土木工程学院,江苏 苏州 215011
Influence of the Initialization Method on the Stability of Traffic Cellular Automata Model
DENG Jianhua, FENG Huanhuan, GE Ting
College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011,China
全文: PDF(1149 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对现有交通元胞自动机模型运行初始不稳定,数据输出存在较长时间的初始波动问题,基于Fisher-Yates算法原理,设计出一种新的交通流初始化方法。该方法可以确保车辆从进入元胞空间到随后的演化更新,其位置及更新时机的随机性。通过对采用新交通流初始化方法的模型进行演化实验,结果表明:任意空间占有率条件下交通流的初始波动区间都在50步以内;当演化更新总步数达到3 600步时,模型剔除初始波动区间的输出数据已充分收敛,这时模型运行已足够稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓建华
冯焕焕
葛婷
关键词 元胞自动机交通流初始化Fisher-Yates算法初始波动区间    
Abstract:Aiming at the initial instability of the existing traffic cellular automata model and the initial fluctuation of data output for a long time, a new traffic flow initialization method is designed based on the principle of Fisher-Yates algorithm. This method can ensure the randomness of the location and update timing of the vehicle from entering the cell space to the subsequent evolution and update. Through the evolution experiment of the model using the new traffic flow initialization method, the results show that the initial fluctuation range is within 50 steps under the condition of arbitrary space occupancy; When the evolution update reaches 3600 steps, the output data of the model after excluding the output of the initial fluctuation interval has converged enough, and the operation of the model is stable enough.
Key wordscellular automata    traffic flow initialization    Fisher-Yates algorithm    initial fluctuation range
收稿日期: 2021-12-01      出版日期: 2023-07-21
ZTFLH:  U491.1  
基金资助:国家自然科学基金(51808370);苏州科技大学基金项目(341311108;XKQ201305)
作者简介: 邓建华(1972-),男,湖南永兴人,硕士,副教授,主要研究方向为交通复杂系统仿真。
引用本文:   
邓建华, 冯焕焕, 葛婷. 初始化对交通元胞自动机模型稳定性的影响[J]. 复杂系统与复杂性科学, 2023, 20(2): 105-110.
DENG Jianhua, FENG Huanhuan, GE Ting. Influence of the Initialization Method on the Stability of Traffic Cellular Automata Model. Complex Systems and Complexity Science, 2023, 20(2): 105-110.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.014      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/105
[1] FOURRATE K, LOULIDI M. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality [J]. Eur Phys J B, 2006, 49(2): 239-246.
[2] NASHINARI K, FUKV M, SCHADSCHNEIDER A. A stochastic cellular automaton model for traffic flow with multiple metastable states[J]. Journal of Physics A: Mathematical and General, 2004, 37(9): 3101-3110.
[3] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic [J]. Journal De Physique I, 1992, 2(12): 2221-2229.
[4] 贾斌, 高自友, 李克平, 等. 基于元胞自动机的交通系统建模与模拟 [M]. 北京: 科学出版社, 2007:70-97.
[5] 谭惠丽, 刘慕仁, 孔令江. 开放边界条件下改进的Nagel-Schreckenberg交通流模型的研究 [J]. 物理学报, 2002, 51(12): 2713-2718.
TAN H L, LIU M R, KONG L J. A study on an improved nagel-schreckenberg traffic flow model with open boundary conditions [J]. Acta Phys Sin, 2002, 51(12): 2713-2718.
[6] TIAN J F, JIA B, LI X G, et al. A new car-following model considering velocity anticipation [J]. Chinese Physics B, 2010, 19(1): 197-203.
[7] NAGATANI T. Clustering of cars in cellular-automaton model of freeway traffic [J]. J Phys Soc Jpn, 1993, 62(11): 3837-3840.
[8] EMMERICH H, RANK E. An improved cellular automaton model for traffic flow simulation [J]. Physica A, 1997, 234(3/4): 676-686.
[9] DONG L Y, XUE Y, DAI S Q. One-dimensional cellular automaton model of traffic flow based on car-following idea [J]. Appl Math Mech-Engl, 2002, 23(4): 363-370.
[10] LI L, YU X, DAI S Q. One-dimensional sensitive driving cellular automaton model for traffic flow [J]. Acta Physica Sinica, 2003, 52(9): 2121-2126.
[11] RICKERT M, NAGEL K, SCHRECKENBERG M, et al. Two lane traffic simulations using cellular automata [J]. Physica A, 1996, 231(4): 534-550.
[12] DAOUDIA A K, MOUSSA N. Numerical simulations of a three-lane traffic model using cellular automata [J]. Chinese J Phys, 2003, 41(6): 671-681.
[13] KUKIDA S, TANIMOTO J, HAGISHIMA A. Analysis of the influence of lane changing on traffic-flow dynamics based on the cellular automaton model [J]. International Journal of Modern Physics C, 2011, 22(3): 271-281.
[14] 敬明, 邓卫, 王昊, 等. 基于跟车行为的双车道交通流元胞自动机模型 [J]. 物理学报, 2012, 61(24): 244502.
JING M, DENG W, WANG H, et al. Two-lane cellular automaton traffic model based on car following behavior [J]. Acta Phys Sin, 2012, 61(24): 244502.
[15] ZHENG Z D. Recent developments and research needs in modeling lane changing [J]. Transportation Research Part B-Methodological, 2014, 60(13): 16-32.
[16] LI H X, SHAO C F, WU H L, et al. Cellular automata approach for modeling lane changing execution [J]. J Cell Autom, 2016, 11(4): 339-350.
[17] 邓建华, 冯焕焕, 葛婷. 多车道元胞自动机换道决策模型的冲突处理策略 [J]. 交通运输系统工程与信息, 2019, 19(4): 50-54.
DENG J H, FENG H H, GE T. Conflict handling strategies of lane-changing decision model of multi-lane cellular automata [J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 50-54.
[18] WOLFRAM S. Universality and complexity in cellular automata [J]. Physica D: Nonlinear Phenomena, 1984, 10(1): 1-35.
[19] PRODINGER H. On the analysis of an algorithm to generate a random cyclic permutation [J]. Ars Combinatoria, 2002, 65(1): 75-78.
[20] DENG J H, FENG H H. A multilane cellular automaton multi-attribute lane-changing decision model [J]. Physica A: Statistical Mechanics and its Applications, 2019, 529: 121545.
[21] 邱小平, 于丹, 孙若晓, 等. 基于安全距离的元胞自动机交通流模型研究 [J]. 交通运输系统工程与信息, 2015, 15(2): 54-60.
QIU X P, YU D, SUN R X, et al. Cellular automata model based on safety distance [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 54-60.
[22] 梁经韵, 张莉莉, 栾悉道, 等. 多路段元胞自动机交通流模型 [J]. 物理学报, 2017, 66(19): 194501.
LIANG J Y, ZHANG L L, LUAN X D, et al. Multi-section cellular automata model of traffic flow [J]. Acta Phys Sin, 2017, 66(19): 194501.
[23] 冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型 [J]. 交通运输系统工程与信息, 2020, 20(2): 139-144.
FENG H H, DENG J H, GE T. Multi-attributes lane-changing decision model based on entropy weight with driving styles [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 139-144.
[1] 桂水荣, 蓝天飞, 陈水生, 葛世祺. 考虑车辆异质性的堵塞交通流模型研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 98-104.
[2] 周美琦, 杨晓霞, 张纪会, 刘天宇. 基于改进元胞自动机模型的地铁车厢乘客疏散模拟[J]. 复杂系统与复杂性科学, 2021, 18(3): 35-44.
[3] 刘天宇, 杨晓霞, 张纪会, 赵逸群, 周美琦. 基于高斯混合模型的受引导人群疏散研究[J]. 复杂系统与复杂性科学, 2020, 17(3): 62-69.
[4] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed