Characteristic Analysis of Strange Nonchaotic Attractors for a Quasiperiodically-forced Piecewise Smooth System
ZHAO Yifan1, SHEN Yunzhu2, DU Chuanbin2
1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China; 2. School of Mathematical Sciences, Jinan University, Jinan 250022, China
Abstract:A quasiperiodically-forced piecewise smooth system is used as the research object to confirm the existence of strange nonchaotic attractors and further analyze several characteristics. Firstly, qualitative methods of phase diagram and power spectrum are used to analyze the fractal characteristics of strange nonchaotic attractors. Some quantitative methods such as the maximum Lyapunov exponent, phase sensitivity exponent, spectral distribution function and finite-time Lyapunov exponent are used to describe the characteristics of strange nonchaotic attractors. The results show that strange nonchaotic attractors can exist in the system under certain parameters, and exhibit a variety of statistical properties different from other types of attractors.
[1]PIKOVSKY A S, FEUDEL U, KUZNETSOV S P. Strange Nonchaotic Attractors: Dynamics Between Order and Chaos In Quasiperiodically Forced Systems[M]. Singapore: World Scientific, 2006. [2]GREBOGI C, OTT E, PELIKAN S, Yorke J A. Strange attractors that are not chaotic[J]. Physica D, 1984, 13(1/2): 261-268. [3]PREMRAJ D, PAWAR S A, KABIRAJ L, et al. Strange nonchaos in self-excited singing flames[J]. EPL, 2020, 128(5): 54005. [4]CABANAS A M, PEREZ L M, LAROZE D. Strange non-chaotic attractors in spin valve systems[J]. Journal of Magnetism and Magnetic Materials, 2018, 460: 320-326. [5]RIZWANA R, RAJA-MOHAMED I. Strange nonchaotic dynamics of parametrically enhanced MLC circuit[J]. Journal of Computational Electronics, 2018, 17(3): 1297-1302. [6]ZHOU C, CHEN T. Robust communication via synchronization between nonchaotic strange attractors[J]. EPL, 1997, 38(4): 261. [7]RAMASWAMY R. Synchronization of strange nonchaotic attractors[J]. Physical Review E, 1997, 56(6): 7294. [8]MITSUI T, AIHARA K. Dynamics between order and chaos in conceptual models of glacial cycles[J]. Climate Dynamics, 2014, 42(11): 3087-3099. [9]LAROZE D, BECERRA-ALONSO D, GALLAS J A C, et al. Magnetization dynamics under a quasiperiodic magnetic field[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3567-3570. [10] ZHOU T, MOSS F, BULSARA A. Observation of a strange nonchaotic attractor in a multistable potential[J]. Physical Review A, 1992, 45(8): 5394. [11] HEAGY J F, HAMMEL S M. The birth of strange nonchaotic attractors[J]. Physica D: Nonlinear Phenomena, 1994, 70(1/2): 140-153. [12] VENKATESAN A, MURALI K, LAKSHMANAN M. Birth of strange nonchaotic attractors through type III intermittency[J]. Physics Letters A, 1999, 259(3/4): 246-253. [13] 张永祥, 俞建宁, 褚衍东, 孔贵芹. 一类新电路系统的奇怪非混沌吸引子分析[J]. 河北师范大学学报, 2008, 32(6): 753-757. ZHANG Y, YU J, CHU Y, KONG G. Analysis of strange non-chaotic attractors for a class of new circuit systems [J]. Journal of Hebei Normal University, 2008, 32(6): 753-757. [14] ZHANG Y, LUO G. Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system[J]. Journal of Sound and Vibration, 2013, 332(21): 5462-5475. [15] ZHANG Y, SHEN Y. A new route to strange nonchaotic attractors in an interval map[J]. International Journal of Bifurcation and Chaos, 2020, 30(4): 2050063. [16] YUE Y, MIAO P, XIE J. Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system[J]. Nonlinear Dynamics, 2016, 87(2): 1-21. [17] LI G, YUE Y, XIE J, et al. Strange nonchaotic attractors in a nonsmooth dynamical system[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104858. [18] LI G, YUE Y, LI D, et al. The existence of strange nonchaotic attractors in the quasiperiodically forced Ricker family[J]. Chaos, 2020, 30(5): 053124. [19] LI G, YUE Y, GREBOGI C, et al. Strange nonchaotic attractors in a periodically forced piecewise linear system with noise[J]. Fractals, 2022, 30(1): 2250003. [20] 沈云柱,张凡辉,东广霞. 概周期驱动分段Logistic系统的奇异非混沌吸引子[J]. 河北师范大学学报, 2019, 43(3): 207-212. SHEN Y, ZHANG F, DONG G. Strange non-chaotic attractor for quasiperiodically driven piecewise Logistic Systems [J]. Journal of Hebei Normal University, 2019, 43(3): 207-212. [21] 徐震,沈云柱. 概周期驱动的二维分段线性范式系统的奇异非混沌吸引子[J]. 济南大学学报, 2022, 36 (2): 231-236. XU Z, SHEN Y. Strange non-chaotic attractors of two-dimensional piecewise linear normal form systems driven by almost period [J]. Journal of Jinan University, 2022, 36(2): 231-236. [22] PRING S R, BUDD C J. The dynamics of regularized discontinuous maps with applications to impacting systems[J]. SIAM Journal on Applied Dynamical Systems, 2010, 9(1): 188-219.