Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 109-117    DOI: 10.13306/j.1672-3813.2025.04.014
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
间歇测量下具有外源干扰的二阶多智能体系统的包容控制
孟卫臣, 王庆芝, 刘永超, 傅保增
青岛大学 a.自动化学院;b.山东省工业控制技术重点实验室,山东 青岛 266071
Containment Control of Second-order Multi-agent Systems with Exogenous Disturbance Under Intermittent Measurement
MENG Weichen, WANG Qingzhi, LIU Yongchao, FU Baozeng
a. School of Automation; b. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
全文: PDF(2254 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决二阶多智能体系统在间歇测量下和具有外源干扰时的包容控制问题,针对每个智能体,提出新颖的干扰观测器;基于Lyapunov函数方法和线性矩阵不等式技术,建立间歇测量下具有外源干扰的二阶多智能体系统可实现包容控制的充分条件;当外源干扰不存在时,给出保守性更低的推论。仿真结果表明:根据该充分条件设计的控制协议在间歇测量下和具有外源干扰时仍然可以发挥有效作用;由推论计算得到的测量时间更小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟卫臣
王庆芝
刘永超
傅保增
关键词 二阶多智能体系统间歇测量外源干扰包容控制    
Abstract:In order to solve the containment control problem of second-order multi-agent systems under intermittent measurement and with exogenous disturbances, a novel disturbance observer for each agent is presented initially. Then, based on the Lyapunov function method and linear matrix inequality technique, sufficient conditions are established to achieve containment control for second-order multi-agent systems with exogenous disturbances under intermittent measurement. Finally, when exogenous disturbances vanish, the less conservative corollary is given. The simulation results show that the control protocol designed by the sufficient conditions can still play an effective role under intermittent measurement and with exogenous disturbances, and that the measurement time calculated by the corollary is smaller.
Key wordssecond-order multi-agent systems    intermittent measurement    exogenous disturbance    containment control
收稿日期: 2023-08-02      出版日期: 2025-12-10
ZTFLH:  N94  
  TP13  
基金资助:国家自然科学青年基金(61903212);山东省自然科学博士基金(ZR2019BF044);山东省高等学校青创科技计划(2022KJ301)
通讯作者: 王庆芝(1988),女,山东济宁人,博士,副教授,主要研究方向为间歇控制、多智能体系统、混沌系统、T-S模糊系统。   
作者简介: 孟卫臣(1999), 男,山东德州人,硕士研究生,主要研究方向为间歇控制、多智能体系统。
引用本文:   
孟卫臣, 王庆芝, 刘永超, 傅保增. 间歇测量下具有外源干扰的二阶多智能体系统的包容控制[J]. 复杂系统与复杂性科学, 2025, 22(4): 109-117.
MENG Weichen, WANG Qingzhi, LIU Yongchao, FU Baozeng. Containment Control of Second-order Multi-agent Systems with Exogenous Disturbance Under Intermittent Measurement[J]. Complex Systems and Complexity Science, 2025, 22(4): 109-117.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.014      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/109
[1] ZHAO L, ZHAO F Y, CHE W W. Distributed adaptive fuzzy fault-tolerant control for multi-agent systems with node faults and denial-of-service attacks[J]. Information Sciences, 2023, 631: 385395.
[2] LI Z K, REN W, LIU X D, et al. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols[J]. Automatica, 2013, 49(7): 19861995.
[3] ZHAO L, CHE W W, DENG C, et al. Adaptive fault-tolerant control for nonlinear MASs under actuator faults and DoS attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 385395.
[4] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19 (2): 6370.
ZHANG Z W, JI Z J.Controllability analysis of a class of multi-agent systems under directed paths[J]. Complex Systems and Complexity Science, 2022, 19 (2): 6370.
[5] 马佩鑫, 程钰, 侯健,等. 基于多智能体深度强化学习的协作导航应用[J]. 计算机系统应用,2023, 32(8): 95104.
MA P X, CHENG Y, HOU J, et al.Collaborative navigation application based on multi-agent deep reinforcement learning[J].Computer System Application, 2023, 32(8): 95104.
[6] 曹佳钰, 冷甦鹏, 张科.面向自动驾驶应用的车联多智能体信息融合协同决策机制研究[J]. 物联网学报, 2020, 4(3): 6977.
CAOJ Y, LENG S P, ZHANG K. Research on cooperative decision-making mechanism of vehicle-connected multi-agent information fusion for autonomous driving applications[J]. Journal of Internet of Things, 2020, 4(3): 6977.
[7] WEI W, GONG S F, LIU H X. A coordinated urban traffic signal control approach based on multi-agent[C]. 2009 International Conference on Intelligent Engineering Systems. Wuhan, China: IEEE, 2009, 263267.
[8] MIAO G Y, MA Q. Group consensus of the first-order multi-agent systems with nonlinear input constraints[J]. Neurocomputing, 2015, 161(5): 113119.
[9] ZHAO D D, DONG T, HU W J. Event-triggered consensus of discrete time second-order multi-agent network[J]. International Journal of Control, Automation and Systems, 2018, 16(1): 8796.
[10] QIN J H, GAO H J. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays[J]. IEEE Transactions on Automatic Control, 2012, 57(9): 24172422.
[11] LIU T, HUANG J. Leader-following consensus with disturbance rejection for uncertain Euler-Lagrange systems over switching networks[J]. International Journal of Robust and Nonlinear Control, 2019, 29(18): 66386656.
[12] HU W F, LIU L, FENG G. Leader-following consensus of linear multi-agent systems by distributed event-triggered control[C]. 2015 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE 2015, 70507055.
[13] XU, W Y, CAO J D, YU W W, et al. Leader-following consensus of non-linear multi-agent systems with jointly connected topology[J]. IET Control Theory & Applications, 2014, 8(6): 432440.
[14] LI Z K, REN W, LIU X D, et al. Distributed containment control of multi-agent systems withgeneral linear dynamics in the presence of multiple lead[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5): 534547.
[15] LIU B J, GUO Y, LI A J. Nussbaum-based finite-time containment control for multi-UAVs with input saturation and velocity constraints[J]. Aerospace Science and Technology, 2023, 139: 12709638.
[16] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19 (1): 2026.
YAN X X, JI Z J. Game modeling analysis of multi-leader perspectives in social networks[J]. Complex Systems and Complexity Science, 2022, 19 (1): 2026.
[17] 刘学良, 张志. 具有通信时延的二阶多智能体系统包容控制[J]. 控制工程, 2018, 25(5): 910914.
LIU X L, ZHANG Z.Containment control of second-order multi-agent systems with communication delays[J]. Control Engineering, 2018, 25(5): 910914.
[18] YANG C H, DUAN M M, LIN P, et al. Distributed containment control of continuous-time multi-agent systems with nonconvex control input constraints[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 79277934.
[19] WANG F Y, LIU Z X, CHEN Z Q. Containment control for second-order nonlinear multi-agent systems with intermittent communications[J]. International Journal of Systems Science, 2019, 50(5): 919934.
[20] WANG F Y, LIU Z X, CHEN Z Q. Distributed containment control for second-order multi-agent systems with time delay and intermittent communication[J]. Journal of Robust and Nonlinear Control, 2018, 28(18): 57305746.
[21] WANG F Y, LIU Z X, CHEN Z Q. Containment control for second-order nonlinear multi-agent systems with aperiodically intermittent position measurements[J]. Journal of the Franklin Institute, 2019, 356(15): 87068725.
[22] CHEN T T, WANG F Y, XIA C Y, et al. Containment control for second-order multi-agent systems with intermittent sampled position data under directed topologies[J]. Knowledge-Based Systems, 2022, 257(5): 109892.
[23] XU C J, ZHENG Y, SU H S, et al. Containment for linear multi-agent systems with exogenous disturbances[J]. Neurocomputing, 2015, 160(21): 206212.
[24] HAN T, LI J, GUAN Z H, et al. Containment control of multi-agent systems via a disturbance observer-based approach[J]. Journal of the Franklin Institute, 2019, 365(5): 29192933.
[25] ZHANG X X, LIU X P. Containment of linear multi-agent systems with disturbances generated by heterogeneous nonlinear exosystems[J]. Neurocomputing, 2018, 315(13): 283291.
[26] WANG Q Z, FU B Z, LIN C, et al. Exponential synchronization of chaotic Lur’e systems with time-triggered intermittent control[J]. Communications in Nonlinear Science and Numerical Simulation. 2022, 109: 106298.
[27] PENG S, WANG Q Z, FU B Z. Exponential stabilization of chaotic systems based on fuzzy time-triggered intermittent control[J]. Chaos, Solitons & Fractals, 2022, 162: 112390.
[1] 李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed