Abstract:Aiming at the problem that the traditional propagation model is difficult to accurately describe the law of information propagation in the blockchain social network, based on the information propagation characteristics of blockchain social networks, this paper considers the influence of the incentive mechanism of blockchain social networks on information propagation, uses evolutionary games to define the state transition probability and proposes a new blockchain social network information propagation model. The influence of group density, state transition probability, and incentive policies on information propagation is analyzed through simulation experiments. Experimental results show that the model can accurately describe the law of information propagation in blockchain social networks. The model proposed in this paper can effectively restrain the propagation of low-quality information in social networks and further build a good network public opinion environment.
赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
ZHAO Yan, BIN Sheng, SUN Gengxin. Information Propagation Model in Bloackchain Social Network. Complex Systems and Complexity Science, 2022, 19(2): 1-8.
[1] PHAN T Q, AIROLDI E M. A natural experiment of social network formation and dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(21): 6595-6600. [2] SAITO K, KIMURA M, OHARA K, et al. Super mediator-a new centrality measure of node importance for information diffusion over social network[J]. Information Sciences, 2016, 329: 985-1000. [3] ZHANG Y T, TANG J, YANG Z, et al. Cosnet: connecting heterogeneous social networks with local and global consistency[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, ACM Press, 2015: 1485-1494. [4] MYERS S A, LESKOVEC J. The bursty dynamics of the twitter information network[C]//Proceedings of the 23rd International Conference on World Wide Web. New York, ACM Press, 2014: 913-924. [5] GUILLE A, HACID H, FAVRE C, et al. Information diffusion in online social networks: a survey[J]. ACM Sigmod Record, 2013, 42(2): 17-28. [6] SWAN M. Blockchain: Blueprint for a New Economy[M]. USA: O'Reilly Media, Inc, 2015. [7] ERSOY O, REN Z, ERKIN Z, et al. Information propagation on permissionless blockchains[DB/OL]. (2018-06-14)[2021-04-20].https:∥arxiv.org/pdf/1712.07564.pdf. [8] 李泰安. 区块链重构网络舆论环境[J]. 传媒, 2017, 21: 87-90. LI T A. Blockchain reconstructs the network public opinion environment[J]. Media, 2017, 21: 87-90. [9] 马强, 林浩瀚. 基于区块链技术的网络谣言治理模式探析——以新闻平台 Steemit 为例[J]. 新闻论坛, 2018, 4: 29-33. MA Q, LIN H H. Analysis on the governance model of network rumors based on blockchain technology——taking news platform Steemit as an example[J]. News Tribune, 2018, 4: 29-33. [10] 赵丹, 王晰巍, 韩洁平, 等. 区块链环境下的网络舆情信息传播特征及规律研究[J]. 情报杂志, 2018, 37(9): 127-133. ZHAO D, WANG X W, HAN J P, et al. Research on the propagation characteristics and rules of network public opinion information in block chain environment[J]. Information Science, 2018, 37(9): 127-133. [11] SUN G, BIN S, JIANG M, et al. Research on public opinion propagation model in social network based on blockchain[J]. CMC-Computers Materials & Continua, 2019, 60(3): 1015-1027. [12] ANDERSON R M, MAY R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford Univ Press,1991:99. [13] HARSANYI J C. Games with incomplete information played by “Bayesian” players, I-III Part I. the basic model[J]. Management Science, 1967, 14(3): 159-182. [14] SMITH J M. The theory of games and the evolution of animal conflicts[J]. Journal of Theoretical Biology, 1974, 47(1): 209-221. [15] TAYLOR P D, JONKER L B. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40(1/2): 145-156. [16] SUNSTEIN C R. On Rumors: How Falsehoods Spread, Why We Believe Them, and What Can Be Done[M]. New York: Farrar, Straus and Giroux, 2014: 28-32. [17] 万佑红, 王小初. 考虑从众效应的谣言传播模型[J]. 计算机应用, 2016, 36(9): 2381-2385. WAN Y H, WANG X C. Rumor spreading model with conformity effect[J]. Journal of Computer Applications, 2016, 36(9): 2381-2385.