Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 38-42    DOI: 10.13306/j.1672-3813.2023.02.005
  本期目录 | 过刊浏览 | 高级检索 |
双噪声激励下的基因转录调控系统的稳态分析
张萌, 郭永峰, 刘倩茹
天津工业大学数学科学学院,天津 300387
Steady-state Analysis of the Gene Transcriptional Regulation System Under the Double-noise Excitation
ZHANG Meng, GUO Yongfeng, LIU Qianru
School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
全文: PDF(1500 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于噪声对生物系统的基因转录调控有着重要的影响作用,研究了乘性高斯白噪声和加性Lévy噪声共同激励下的基因转录调控系统的动力学特性。首先借助Janicki-Weron算法模拟出Lévy噪声,然后利用四阶Runge-Kutta 算法计算出蛋白质浓度的稳态概率密度函数,并通过绘制其图像对系统的动力学行为进行稳态分析。研究发现:高斯噪声强度、Lévy噪声强度、稳定性指标、偏斜参数均会诱导蛋白质浓度发生相变现象,且这些参数指标的增大会使基因转录调控系统逐渐从“开启”状态转变为“关闭”状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张萌
郭永峰
刘倩茹
关键词 基因转录调控系统Lévy噪声高斯白噪声稳态概率密度相变    
Abstract:Noise is playing an important role in the regulation of gene transcription in biological systems. This paper studies the dynamics of gene transcription regulation system under the effects of multiplicative Gaussian white noise and additive Lévy noise. Firstly, the Lévy noise is simulated with the Janicki-Weron algorithm, and then the fourth-order Runge-Kutta algorithm is used to calculate the steady-state probability density(SPD) function of the protein concentration, then the steady state analysis of the gene transcriptional regulation system is carried out by the SPD figures. The study found that Gaussian noise intensity, Lévy noise intensity, stability index, and skewness parameter all can induce phase transitions in the gene transcription regulation system; At the same time, the increase of these parameters will cause the gene transcription regulation system to gradually the " on" state changes to the "off" state.
Key wordsgene transcriptional regulation system    Lévy noise    Gaussian white noise    steady-state probability density    phase transitions
收稿日期: 2021-09-17      出版日期: 2023-07-21
ZTFLH:  O414.2  
  O415.6  
基金资助:国家自然科学基金(11672207);天津市自然科学基金(17JCYBJC15700)
通讯作者: 郭永峰(1980-),男,山东济宁人,博士,教授,主要研究方向为随机动力系统,应用概率统计等。   
作者简介: 张萌(1997-),女,天津人,硕士研究生,主要研究方向为应用概率统计。
引用本文:   
张萌, 郭永峰, 刘倩茹. 双噪声激励下的基因转录调控系统的稳态分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 38-42.
ZHANG Meng, GUO Yongfeng, LIU Qianru. Steady-state Analysis of the Gene Transcriptional Regulation System Under the Double-noise Excitation. Complex Systems and Complexity Science, 2023, 20(2): 38-42.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.005      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/38
[1] 胡岗. 随机力与非线性系统[M]. 上海:上海科技教育出版社, 1994:125-183.
[2] KRAMERS H A. Brownian motion in a field of force and the diffusion model of chemical reactions[J]. Physica, 1940, 7(4):284-304.
[3] GHOSH P K , BARIK D , RAY D S. Noise-induced transition in a quantum system[J]. Physics Letters A, 2005, 342(1/2):12-21.
[4] MANGIONI S E, DEZA R R, et al. Nonequilibrium phase transitions induced by multiplicative noise: effects of self-correlation[J]. Phys Rev E, 2000, 61(1):223-232.
[5] BIERWIRTH M , Using single transients on the performance analysis of electrochemical noise amplifiers[J]. Materials and Corrosion, 2013, 64:664-670.
[6] XU Y, GU R C, ZHANG H Q, et al. Stochastic bifurcations in a bistable duffing-van der pol oscillator with colored noise[J]. Physical Review E, 2011, 83(5):056215.
[7] 李娟娟, 许勇, 冯晶. Duffing系统中Lévy噪声诱导的随机共振与相转移[J]. 动力学与控制学报, 2012, 10(3):278-282.
LI JJ , XU Y , F J. Stochastic resonance and phase transfer induced by lévy noise in duffing system[J]. Journal of dynamics and control, 2012, 10(3):278-282.
[8] 杨定新,胡政,杨拥民.大参数周期信号随机共振解析[J].物理学报,2012, 61(8):50-59.
YANG DX , HU Z , YANG Y M. Stochastic resonance analysis of large parameter periodic signals[J]. Acta Physica Sinica, 2012, 61(8):50-59.
[9] 冷永刚,王太勇, 二次采样用于随机共振从强噪声中提取弱信号的数值研究[J]. 物理学报, 2003, 52(10):2432-2437.
LENG YG , WANG T Y. Numberical research of twice sampling storchastic resonance for the detection of a week signal submerged in a heavy noise[J]. Acta Physica Sinica, 2003, 52(10):2432-2437.
[10] XIE Q S, WANG T H, ZENG C H, et al. Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 493:69-83.
[11] SMOLEN P , ET A L. Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems.[J]. American Journal of Physiology. Cell Physiology, 1998, 274(2):C531-C542.
[12] RAJ A , OUDENAARDEN A V. Nature, nurture, or chance: stochastic gene expression and its consequences[J]. Cell, 2008, 135(2):216-226.
[13] LI G W, XIE X S. Central dogma at the single-molecule level in living cells.[J]. Nature, 2011, 475: 308-315.
[14] 刘泉. 基因转录调节动力学中的随机性质:涨落诱导基因开关[D]. 武汉:华中师范大学, 2004.
LIU Q. Random properties in the dynamics of gene transcriptional regulation: fluctuation induced gene switching[D]. WUHAN: Central China Normal University, 2004.
[15] SMOLEN P, BAXTER D A, BYRNE J H. Mathematical modeling of gene networks[J]. Neuron, 2000, 26(3):567-580.
[16] LIU Q , JIA Y. Fluctuations-induced switch in the gene transcriptional regulatory system[J]. Physical Review E, 2004, 70(4):041907.
[17] GOLDING I, PAULSSON J, ZAWIISKI S, et al. Real-time kinetics of gene activity in individual bacteria[J]. Cell, 2005, 123(6):1025-1036.
[18] RAJ A, PESKIN C S, TRANCHINA D, et al. Stochastic mRNA synthesis in mammalian cells[J]. Plos Biology, 2006, 4(10):e309.
[19] XU Y, FENG J, LI J J, et al. Lévy noise induced switch in the gene transcriptional regulatory system[J]. Chaos, 2013, 23(1): 013110.
[20] SONG Y, XU W. Stability of a gene transcriptional regulatory system under non-gaussian noise[J]. Chaos, Solitons & Fractals, 2020, 130: 109430.
[21] CHEN X, KANG Y M, FU Y X. Switches in a Genetic regulatory system under multiplicative non-gaussian noise[J]. Journal of Theoretical Biology, 2017, 435: 134-144.
[22] 顾仁财,许勇,郝孟丽,等. Lévy稳定噪声激励下的Duffing-van der Pol振子的随机分岔[J]. 物理学报, 2011, 60(6):157-161.
GU CR , XU Y , HAO M L, et al. Stochastic bifurcations in duffing-van der Pol oscillator with lévy stable noise[J]. Acta Physica Sinica, 2011, 60(6):157-161.
[23] 方鸿雁,潘园园,孙华通,等.耦合神经网络中脉冲信号传输的噪声增强研究[J].复杂系统与复杂性科学,2017, 14(2):59-64.
FANG HY , PAN Y Y , SUN H T, et al. Study of noise-enhanced pulse signal transmission in coupling neural networks[J]. Complex Systems and Complexity Science, 2017, 14(2):59-64.
[24] 徐超,康艳梅.非高斯噪声激励下含周期信号FitzHugh-Nagumo系统的响应特征[J].物理学报,2011,60(10):742-749.
XU C, KANG YM. Mean response time of FitzHugh-Nagumo model in the presence of non-gaussian noise and a periodic signal[J]. Acta Physica Sinica , 2011, 60(10):742-749.
[25] WERON A , WERON R. Computer Simulation of Lévy α-stable Variables and Processes[M]. Berlin Heidelberg: Springer, 1995: 379–392.
[26] WERON R. On the chambers-mallows-stuck method for simulating skewed stable random variables[J]. Stat Probabil Lett 1996, 28(2):165–71.
[27] GUARCELLO C , FILATRELLA G , SPAGNOLO B , et al. Voltage drop across Josephson junctions for Lévy noise detection[J]. Physical Review Research, 2020, 2(4): 043332.
[28] REBECCA L H. Stochastic runge-kutta algorithms. I. white noise[J]. Physical Review A, 1992, 45(2): 600-603.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed