Abstract:In order to better reveal the transmission mechanism of COVID-19, this paper proposes the SEAIHR dynamic model by analyzing the transmission characteristics of COVID-19, considering the self-healing of the hidden lurks and the early isolation of the lurks, introducing “h hospitalization isolation”, “recessive cure”, considering the change of prevention and control intensity, and introducing “morbidity status”. Using the real epidemic data and considering the changes of parameters in different stages, a multi model comparative test was conducted. The experimental results showed that the fitting and prediction accuracy of the SEAIHR model was significantly improved, and the fitting error was 34.4%~72.8% lower than that of the classical model in the early and middle stages of the epidemic, providing reference and guidance for epidemic prevention and control.
朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
ZHU Maochang, BIN Sheng, SUN Gengxin. Construction and Research of Infectious Disease Model Based on COVID-19 Transmission Characteristics. Complex Systems and Complexity Science, 2023, 20(2): 29-37.
[1] LIU Z H, MAGAL P, SEYDI O, et al. Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions[J]. Biology,2020,9(3): 50. [2] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England journal of medicine, 2020,382(13): 1199-1209. [3] 耿辉, 徐安定, 王晓艳, 等. 基于 SEIR 模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报 (自然科学与医学版), 2020, 41(2): 1-7. GENG H, XU A D, WANG X Y, et al. Analysis of the role of related interventions in new coronavirus pneumonia based on SEIR model [J]. Journal of Jinan University (Natural Science and medicine), 2020, 41 (2): 1-7. [4] 范如国,王奕博,罗明,等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报,2020,49(3):369-374. FAN R G, WANG Y B, LUO M, et al. A novel coronavirus pneumonia transmission model and inflection point prediction based on SEIR [J]. University of Electronic Science and technology, 2020,49(3):369-374. [5] 严阅,陈瑜,刘可伋,等.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J]. 中国科学:数学,2020,50(3):385-392. YAN Y, CHEN Y, LIU K Z, et al. Modeling and prediction of new coronavirus pneumonia based on a class of delayed dynamical systems [J]. China Science: Mathematics, 2020,50 (3): 385-392. [6] ANGGRIANI N, NDII M Z, AMELIA R, et al. Amathematical COVID-19 model considering asymptomatic and symptoma-tic classes with waning immunity[J]. Alexandria Engineering Journal, 2022, 61(1): 113-124. [7] KERMACK W O, MCKENDIRCK A G. Contributions to the mathematical theory of epidemics-I. 1927[J]. Bulletin of mathematical biology, 1991, 53(1/2) : 33-55. [8] Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press,1991:99. [9] 曹盛力, 冯沛华, 时朋朋. 修正 SEIR 传染病动力学模型应用于湖北省 2019 冠状病毒病 (COVID-19) 疫情预测和评估[J]. 浙江大学学报 (医学版), 2020, 49(2): 178-184. CAO S L, FENG P H, SHI P P. Application of modified SEIR epidemic dynamics model to prediction and evaluation of 2019 coronavirus disease (COVID-19) in Hubei Province [J]. Journal of Zhejiang University (Medical Edition), 2020, 49 (2): 178-184. [10] CHEN D X, YANG Y F, ZHANG Y F, et al. Prediction of COVID-19 spread by sliding m SEIR observer[J].Science China(Information Sciences),2020,63(12):166-178. [11] EFIMOV D, USHIROBIRA R. On an interval prediction of COVID-19 development based on a SEIR epidemic model[J]. Annual Reviews in Control, 2021. [12] 林俊锋. 基于引入隐形传播者的SEIR模型的COVID-19疫情分析和预测[J]. 电子科技大学学报,2020,49(3):375-382. LIN J F. Covid-19 epidemic analysis and prediction based on SEIR model with invisible communicators [J]. Journal of University of Electronic Science and Technology, 2020,49 (3): 375-382. [13] 邓春燕, 郭强, 傅家旗. 考虑人群流动数据的COVID-19传播模型[J]. 上海理工大学学报,2021,43(1):59-67,92. DENG C Y, GUO Q, FU J Q. Covid-19 propagation model considering crowd flow data [J]. Journal of Shanghai University of Technology, 2021,43 (1): 59-67 , 92. [14] 廖影,张学良,焦海燕,等. 乌鲁木齐市COVID-19传播的动力学模型研究[J]. 中华疾病控制杂志,2021,25(8):905-911,922. LIAO Y, ZHANG X L, JIAO H Y, et al. Study on the dynamic model of covid-19 transmission in Urumqi [J]. Chinese Journal of Disease Control, 2021,25 (8): 905-911, 922. [15] 荆磊,刘明皓,陈春,等. 基于SEIRD-GEOCA的COVID-19疫情时空分布模型构建与情景模拟[J]. 西南大学学报(自然科学版),2022,44(2):207-218. JING L, LIU M H, CHEN C, et al. Construction and scenario simulation of COVID-19 epidemicspatio-temporal distribution model based on SEIRD-GEOCA [J]. Journal of Southwest University (Natural Science Edition), 2022,44 (2): 207-218. [16] HE S, PENG Y, SUN K. SEIR modeling of the COVID-19 and its dynamics[J]. Nonlinear Dynamics, 2020, 101(3): 1667-1680. [17] ANNAS S, PRATAMA M I, RIFANDI M, et al. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia[J]. Chaos, Solitons & Fractals, 2020, 139: 110072. [18] LIU C, HUANG J, JI F, et al. Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach[J]. Atmospheric and Oceanic Science Letters, 2021, 14(4): 100019. [19] IHME COVID-19 forecasting team. Modeling COVID-19 scenarios for the United States[J/OL]. Nature Medicine. (2020-10-23)[2021-12-20].DOI:10.1038/s41591-020-1132-9. [20] 邱明悦,胡涛,崔恒建. 双区间删失下新冠病毒肺炎潜伏期分布的参数估计[J]. 应用数学学报,2020,43(2):200-210. QIU M Y, HU T, CUI H J. Estimation of latent period distribution of COVID-19 pneumonia in double interval censored [J]. Proceedings of Applied Mathematics, 2020,43 (2): 200-210. [21] WANG D W, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients With 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA,2020,323(11):1061-1069. [22] 韦爱举,张新建,王俊义,等. 一类埃博拉传染病模型的动力学分析[J]. 数学物理学报: A 辑, 2017, 37(3): 577-592. WEI A J, ZHANG X J, WANG J Y, et al. Dynamic analysis of a class of Ebola epidemic model [J]. Journal of Mathematical Physics: Part A, 2017, 37 (3): 577-592. [23] WALLINGA J, LIPSITCH M. How generation intervals shape the relationship between growth rates and reproductive numbers[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1609): 599-604.