Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 29-37    DOI: 10.13306/j.1672-3813.2023.02.004
  本期目录 | 过刊浏览 | 高级检索 |
基于COVID-19传播特性的传染病模型的构建与研究
朱懋昌, 宾晟, 孙更新
青岛大学计算机科学技术学院,山东 青岛 266071
Construction and Research of Infectious Disease Model Based on COVID-19 Transmission Characteristics
ZHU Maochang, BIN Sheng, SUN Gengxin
School of Computer Science and Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1770 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了更好地揭示新冠肺炎(COVID-19)的传播机理,通过分析新冠病毒(2019-nCoV)的传播特性,考虑隐性潜伏者的自愈以及潜伏者的提前隔离,引入“入院隔离状态”,“隐性治愈状态”,考虑防控强度的变化,引入“发病状态”,提出了SEAIHR动力学模型。利用真实疫情数据,考虑不同阶段参数的变化,进行了多模型对比试验。实验结果表明,SEAIHR模型拟合和预测精度有明显提升,较经典模型在疫情前中期降低了34.4%~72.8%拟合误差,为疫情防控提供了参考与指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱懋昌
宾晟
孙更新
关键词 SEIR隐性潜伏者COVID-19动力学模型    
Abstract:In order to better reveal the transmission mechanism of COVID-19, this paper proposes the SEAIHR dynamic model by analyzing the transmission characteristics of COVID-19, considering the self-healing of the hidden lurks and the early isolation of the lurks, introducing “h hospitalization isolation”, “recessive cure”, considering the change of prevention and control intensity, and introducing “morbidity status”. Using the real epidemic data and considering the changes of parameters in different stages, a multi model comparative test was conducted. The experimental results showed that the fitting and prediction accuracy of the SEAIHR model was significantly improved, and the fitting error was 34.4%~72.8% lower than that of the classical model in the early and middle stages of the epidemic, providing reference and guidance for epidemic prevention and control.
Key wordsSEIR    hidden lurker    COVID-19    dynamic model
收稿日期: 2022-04-27      出版日期: 2023-07-21
ZTFLH:  O29  
  TP391  
基金资助:山东省自然基金面上项目(ZR2021MG006);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978-),男,山东青岛人,博士,副教授,主要研究方向为复杂网络,复杂网络中传播动力学及相关传播模型。   
作者简介: 朱懋昌(1997-),男,山东济宁人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
ZHU Maochang, BIN Sheng, SUN Gengxin. Construction and Research of Infectious Disease Model Based on COVID-19 Transmission Characteristics. Complex Systems and Complexity Science, 2023, 20(2): 29-37.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.004      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/29
[1] LIU Z H, MAGAL P, SEYDI O, et al. Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions[J]. Biology,2020,9(3): 50.
[2] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England journal of medicine, 2020,382(13): 1199-1209.
[3] 耿辉, 徐安定, 王晓艳, 等. 基于 SEIR 模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报 (自然科学与医学版), 2020, 41(2): 1-7.
GENG H, XU A D, WANG X Y, et al. Analysis of the role of related interventions in new coronavirus pneumonia based on SEIR model [J]. Journal of Jinan University (Natural Science and medicine), 2020, 41 (2): 1-7.
[4] 范如国,王奕博,罗明,等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报,2020,49(3):369-374.
FAN R G, WANG Y B, LUO M, et al. A novel coronavirus pneumonia transmission model and inflection point prediction based on SEIR [J]. University of Electronic Science and technology, 2020,49(3):369-374.
[5] 严阅,陈瑜,刘可伋,等.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J]. 中国科学:数学,2020,50(3):385-392.
YAN Y, CHEN Y, LIU K Z, et al. Modeling and prediction of new coronavirus pneumonia based on a class of delayed dynamical systems [J]. China Science: Mathematics, 2020,50 (3): 385-392.
[6] ANGGRIANI N, NDII M Z, AMELIA R, et al. Amathematical COVID-19 model considering asymptomatic and symptoma-tic classes with waning immunity[J]. Alexandria Engineering Journal, 2022, 61(1): 113-124.
[7] KERMACK W O, MCKENDIRCK A G. Contributions to the mathematical theory of epidemics-I. 1927[J]. Bulletin of mathematical biology, 1991, 53(1/2) : 33-55.
[8] Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University Press,1991:99.
[9] 曹盛力, 冯沛华, 时朋朋. 修正 SEIR 传染病动力学模型应用于湖北省 2019 冠状病毒病 (COVID-19) 疫情预测和评估[J]. 浙江大学学报 (医学版), 2020, 49(2): 178-184.
CAO S L, FENG P H, SHI P P. Application of modified SEIR epidemic dynamics model to prediction and evaluation of 2019 coronavirus disease (COVID-19) in Hubei Province [J]. Journal of Zhejiang University (Medical Edition), 2020, 49 (2): 178-184.
[10] CHEN D X, YANG Y F, ZHANG Y F, et al. Prediction of COVID-19 spread by sliding m SEIR observer[J].Science China(Information Sciences),2020,63(12):166-178.
[11] EFIMOV D, USHIROBIRA R. On an interval prediction of COVID-19 development based on a SEIR epidemic model[J]. Annual Reviews in Control, 2021.
[12] 林俊锋. 基于引入隐形传播者的SEIR模型的COVID-19疫情分析和预测[J]. 电子科技大学学报,2020,49(3):375-382.
LIN J F. Covid-19 epidemic analysis and prediction based on SEIR model with invisible communicators [J]. Journal of University of Electronic Science and Technology, 2020,49 (3): 375-382.
[13] 邓春燕, 郭强, 傅家旗. 考虑人群流动数据的COVID-19传播模型[J]. 上海理工大学学报,2021,43(1):59-67,92.
DENG C Y, GUO Q, FU J Q. Covid-19 propagation model considering crowd flow data [J]. Journal of Shanghai University of Technology, 2021,43 (1): 59-67 , 92.
[14] 廖影,张学良,焦海燕,等. 乌鲁木齐市COVID-19传播的动力学模型研究[J]. 中华疾病控制杂志,2021,25(8):905-911,922.
LIAO Y, ZHANG X L, JIAO H Y, et al. Study on the dynamic model of covid-19 transmission in Urumqi [J]. Chinese Journal of Disease Control, 2021,25 (8): 905-911, 922.
[15] 荆磊,刘明皓,陈春,等. 基于SEIRD-GEOCA的COVID-19疫情时空分布模型构建与情景模拟[J]. 西南大学学报(自然科学版),2022,44(2):207-218.
JING L, LIU M H, CHEN C, et al. Construction and scenario simulation of COVID-19 epidemicspatio-temporal distribution model based on SEIRD-GEOCA [J]. Journal of Southwest University (Natural Science Edition), 2022,44 (2): 207-218.
[16] HE S, PENG Y, SUN K. SEIR modeling of the COVID-19 and its dynamics[J]. Nonlinear Dynamics, 2020, 101(3): 1667-1680.
[17] ANNAS S, PRATAMA M I, RIFANDI M, et al. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia[J]. Chaos, Solitons & Fractals, 2020, 139: 110072.
[18] LIU C, HUANG J, JI F, et al. Improvement of the global prediction system of the COVID-19 pandemic based on the ensemble empirical mode decomposition (EEMD) and autoregressive moving average (ARMA) model in a hybrid approach[J]. Atmospheric and Oceanic Science Letters, 2021, 14(4): 100019.
[19] IHME COVID-19 forecasting team. Modeling COVID-19 scenarios for the United States[J/OL]. Nature Medicine. (2020-10-23)[2021-12-20].DOI:10.1038/s41591-020-1132-9.
[20] 邱明悦,胡涛,崔恒建. 双区间删失下新冠病毒肺炎潜伏期分布的参数估计[J]. 应用数学学报,2020,43(2):200-210.
QIU M Y, HU T, CUI H J. Estimation of latent period distribution of COVID-19 pneumonia in double interval censored [J]. Proceedings of Applied Mathematics, 2020,43 (2): 200-210.
[21] WANG D W, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients With 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA,2020,323(11):1061-1069.
[22] 韦爱举,张新建,王俊义,等. 一类埃博拉传染病模型的动力学分析[J]. 数学物理学报: A 辑, 2017, 37(3): 577-592.
WEI A J, ZHANG X J, WANG J Y, et al. Dynamic analysis of a class of Ebola epidemic model [J]. Journal of Mathematical Physics: Part A, 2017, 37 (3): 577-592.
[23] WALLINGA J, LIPSITCH M. How generation intervals shape the relationship between growth rates and reproductive numbers[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1609): 599-604.
[1] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
[2] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[3] 席周慧, 孟德霖, 赵继军. 钻石公主号邮轮上COVID-19传播动态的研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 67-73.
[4] 李稚, 宋敏. 基于“病毒变异”和“环境传人”因素的COVID-19疫情传播动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 1-8.
[5] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[6] 张奥博, 樊瑛, 狄增如. 符号网络下平衡结构对舆论形成的影响[J]. 复杂系统与复杂性科学, 2019, 16(3): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed