Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 20-28    DOI: 10.13306/j.1672-3813.2023.02.003
  本期目录 | 过刊浏览 | 高级检索 |
基于最大熵的新型冠状病毒代际间隔分布估计
高远东1, 李华龙1, 王小华1, 陈端兵2, 梁义娟1, 温涛1, 周涛2, 陶勇1
1.西南大学经济管理学院,重庆 400715;
2.电子科技大学大数据研究中心,成都 611731
Maximum Entropy Method for Estimating the Generation Interval Distribution of COVID-19
GAO Yuandong, LI Hualong, WANG Xiaohua, CHEN Duanbing, LIANG Yijuan, WEN Tao, ZHOU Tao, TAO Yong
1. College of Economics and Management, Southwest University, Chongqing 400715, China;
2. Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
全文: PDF(1872 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传染病代际间隔τ对于探究病毒传播规律具有重要的理论与实用价值,而通常其概率分布函数是未知的。因此,尝试利用最大熵方法推断代际间隔分布函数的最概然形式,详细分析了全球20个国家4 986个新型冠状病毒病例信息,在充分考虑样本多样性的基础上估计了该病毒代际间隔的总体均值和方差,然后基于此方法推定了全球新型冠状病毒代际间隔分布函数并以此计算了中国的基本再生数。研究结论有助于进一步客观地分析病毒传播特征,为制定常态化疫情防控对策和相关领域研究提供重要的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高远东
李华龙
王小华
陈端兵
梁义娟
温涛
周涛
陶勇
关键词 新型冠状病毒最大熵原理代际间隔分布函数阶矩信息    
Abstract:The intergenerational τ has important theoretical and practical value to explore the law of virus transmission, but the probability distribution function is unknown. Therefore, this paper tries to infer the most probable form of the intergenerational interval distribution function by using the maximum entropy method, and analyzes the information of 4 986 cases of novel coronavirus from 20 countries in the world in detail, and estimates the mean and variance of the intergenerational interval of the virus on the basis of fully considering the diversity of samples. Then, based on this method, the global intergenerational interval distribution function of novel coronavirus was deduced and the basic reproduction number of China is calculated. The conclusion of this study is helpful for further objective analysis of the transmission characteristics of the virus, and provides important reference value for the formulation of regular epidemic prevention and control countermeasures and related research.
Key wordsCOVID-19    maximum entropy method    generation interval    distribution function    moment information
收稿日期: 2021-12-07      出版日期: 2023-07-21
ZTFLH:  R181.8  
基金资助:国家社会科学基金重点项目(19AJY015) ;国家自然科学基金面上项目(61673085)
通讯作者: 陶勇(1981-),男,重庆人,博士,副教授,主要研究方向为复杂系统。   
作者简介: 高远东(1979-),男,内蒙古乌兰察布人,博士,教授,主要研究方向为复杂网络。
引用本文:   
高远东, 李华龙, 王小华, 陈端兵, 梁义娟, 温涛, 周涛, 陶勇. 基于最大熵的新型冠状病毒代际间隔分布估计[J]. 复杂系统与复杂性科学, 2023, 20(2): 20-28.
GAO Yuandong, LI Hualong, WANG Xiaohua, CHEN Duanbing, LIANG Yijuan, WEN Tao, ZHOU Tao, TAO Yong. Maximum Entropy Method for Estimating the Generation Interval Distribution of COVID-19. Complex Systems and Complexity Science, 2023, 20(2): 20-28.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.003      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/20
[1] WALLINGA J, LIPSITCH M. How generation intervals shape the relationship between growth rates and reproductive numbers[J]. Proceedings of the Royal Society B-biological Sciences, 2007, 274(1609): 599-604.
[2] 杜亦牧,孙昌璞. 基于最大熵原理可靠性分析的病毒传播模型[J]. 科学通报, 2020, 65(22): 2356-2362.
DU Y M, SUN C P. Maximum entropy approach to reliability analysis based epidemic disease model[J]. Chinese Science Bulletin, 2020, 65(22): 2356-2362.
[3] KENAH E, ROBINS J M. Second look at the spread of epidemics on networks[J]. Physical Review E, 2007, 76 (3): 36113-36113.
[4] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study [J]. Lancet, 2020, 395(10225): 689-697.
[5] CAUCHEMZ S, BOELLE P Y, DONNELLY C A, et al. Real-time estimates in early detection of SARS[J]. Emerging Infectious Diseases, 2006, 12(1): 110-113.
[6] HASAN A, SUSANTO H, KASIM M F, et al. Superspreading in early transmissions of COVID-19 in Indonesia[J]. Scientific Reports, 2020, 10 (1): 22386.
[7] TAO Y. Maximum entropy method for estimating the reproduction number: an investigation for COVID-19 in China and the United States[J]. Physical Review E, 2020, 102(3): 0321363.
[8] ZHAO S, GAO D, ZHUANG Z, et al. Estimating the serial interval of the novel coronavirus disease (COVID-19): a statistical analysis using the public data in Hong Kong from January 16 to February 15, 2020[J]. Frontiers in Physics, 2020, 8(9): 347.
[9] DU Z, XU X, WU Y, et al. COVID-19 serial interval estimates based on confirmed cases in public reports from 86 Chinese cities[DB/OL]. (2020-04-23) [2021-11-15]. http://www.medrxiv.org/content/10.1101/2020.04.23.20075796.
[10] DU Z, XU X, WU Y, et al. Serial Interval of COVID-19 among publicly reported confirmed cases[J]. Emerging Infectious Diseases, 2020, 26(6): 1341-1343.
[11] WONG J, CHAW L, KOH W C, et al. Epidemiological investigation of the first 135 COVID-19 cases in Brunei: implications for surveillance, control, and travel restrictions[J]. American Journal of Tropical Medicine, 2020, 103(4): 1608-1613.
[12] LIPSITCH M, COHEN T, COOPER B, et al. Transmission dynamics and control of severe acute respiratory syndrome[J]. Science, 2003, 300 (5627): 1966-1970.
[13] NAJAFI F, IZADI N, Hashemi-Nazari S, et al. Serial interval and time-varying reproduction number estimation for COVID-19 in western Iran[J]. New Microbes and New Infections, 2020, 36(7): 100715.
[14] ZHANG S, DIAO M, YU W, et al. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: a data-driven analysis[J]. International Journal of Infectious Diseases, 2020, 93(4): 201-204.
[15] GANYANI T, KREMER C, CHEN D, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020[J]. Euro Surveillance : Bulletin Europeen Sur Les Maladies, 2020, 25(17): 12-19.
[16] AGHAALI M, KOLIFARHOOD G, NIKBAKHT R, et al. Estimation of the serial interval and basic reproduction number of COVID-19 in Qom, Iran, and three other countries: a data-driven analysis in the early phase of the outbreak[J]. Transboundary and Emerging Diseases, 2020, 67(6): 2860-2868.
[17] WU J T, LEUNG K, BUSHMAN M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China[J]. Nature Medicine, 2020, 26(4): 506-510.
[18] ZHOU T, LIU Q, YANG Z, et al. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV[J]. Journal of Evidence-Based Dental Practice, 2020, 13(1): 3-7.
[19] JAYNES E T. On the rationale of maximum-entropy methods[J]. Proceedings of the IEEE, 1982, 70(9): 939-952.
[20] YOU C, DENG Y, Hu W, et al. Estimation of the time-varying reproduction number of COVID-19 outbreak in China[J]. International Journal of Hygiene and Environmental Health, 2020, 228(7): 113555.
[21] CHEN D, ZHOU T. Evaluating the effect of Chinese control measures on COVID-19 via temporal reproduction number estimation[J]. PLoS One, 2021, 16(2): e0246715.
[22] LI Q, GUAN X, WU P, et al. Early Transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382(13): 1199-1207.
[23] VIEGO V, GERI M, CASTIGLIA J, et al. Incubation period and serial interval of Covid-19 in a chain of infections in Bahia Blanca (Argentina) [DB/OL]. (2020-06-18)[2021-11-15]. https ://doi.org/10.1101/2020.06.18.20134825.
[24] PRETE C A, BUSS L, DIGHE A, et al. Serial interval distribution of SARS-CoV-2 infection in Brazil[J]. Oxford University Press Public Health Emergency, 2021, 28(2): 115.
[25] SAURABH S, VERMA M K, GAUTAM V, et al. Transmission dynamics of the COVID-19 epidemic at the district level in India: prospective observational study[J]. JMIR Public Health and Surveillance, 2020, 6(4): e22678.
[26] CHINTALAPUDI N, BATTINENI G, SAGARO G G, et al. COVID-19 outbreak reproduction number estimations and forecasting in Marche, Italy[J]. International Journal of Infectious Diseases, 2020, 96(5): 327-333.
[27] JEREMIE S, SARAH N, TIMOTHY V G, et al. Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the cantons of basel-stadt and basel-landschaft[J]. Schweizerische Medizinische Wochenschrift, 2020, 150(4): w20271.
[28] FERRTTI L, WYMANT C, KENDALL M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491): 6936.
[29] NISHIURA H, LINTON N M, AKMETZHANOV A R. Serial interval of novel coronavirus (COVID-19) infections[J]. International Journal of Infectious Diseases, 2020, 93(4): 284-286.
[30] WANG K, ZHAO S, LIAO Y, et al. Estimating the serial interval of the novel coronavirus disease (COVID) based on the public surveillance data in Shenzhen, China from January 19 to February 22, 2020[J]. Transboundary and Emerging Diseases, 2020, 67(6): 2818-2822.
[31] MAJUMDER M S, Mandl K D. Early transmissibility assessment of a novel coronavirus in Wuhan, China[DB/OL]. [2021-11-15]. https://tongtianta.site/paper/76230.
[32] RIOU J, ALTHAUS C L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020[J]. Euro Surveillance : Bulletin Europeen sur les Maladies, 2020, 25(4): 7-11.
[33] LIU Q H, BENTO A I, YANG K X, et al. The COVID-19 outbreak in Sichuan, China: epidemiology and impact of interventions[DB/OL]. (2020-07-20)[2021-11-15]. https ://doi.org/10.1101/2020.07.20.20157602.
[34] AHMAD Z, ARIF M, ALI F, et al. A report on COVID-19 epidemic in Pakistan using SEIR fractional model[J]. Scientific Reports, 2020, 10(12): 22268.
[35] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet, 2020, 395(10225): 689-697.
[36] LIU T, HH J, KANG M, et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV) [DB/OL]. [2021-11-15].http://dx.doi.org/10.2139/ssrn.3526307.
[37] READ J, BRIDGEN J, CUMMINGS D, et al. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions[DB/OL]. (2020-01-23)[2021-11-15]. https://doi.org/10.1101/2020.01.23.20018549.
[38] SHIM E, TARIQ A, CHOWELL G. Spatial variability in reproduction number and doubling time across two waves of the COVID-19 pandemic in South Korea, February to July, 2020[J]. International Journal of Infectious Diseases, 2020, 102(1): 1-9.
[39] CAO Z, ZHANG Q, LU X, et al. Estimating the effective reproduction number of the 2019-nCoV in China[DB/OL]. (2020-01-27)[2021-11-15]. https://doi.org/10.1101/2020.01.27.20018952.
[40] GUO Z, XIAO D. Analysis and prediction of the coronavirus disease epidemic in China based on an individual-based model[J]. Scientific Reports, 2020, 10(12): 22123.
[41] TANG B, WANG X, LI Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9(2): 462.
[42] SHEN M, PENG Z, XIAO Y, et al. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China[J]. The Innovation, 2020, 1(3): 100048.
[43] PARK M, COOK A R, Lim J T, et al. A systematic review of COVID-19 epidemiology based on current evidence[J]. Journal of Clinical Medicine, 2020, 9(4): 967.
[44] HELLEWELL J, ABBOTT S, GIMMA A, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts[J]. The Lancet Global Health, 2020, 8(4): 488-496.
[1] 周武略, 白迪, 赵继军. 武汉市发生的新冠病毒肺炎建模研究分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed