Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 52-59    DOI: 10.13306/j.1672-3813.2023.03.007
  本期目录 | 过刊浏览 | 高级检索 |
基于微博数据挖掘的贝叶斯观点演化模型
刘颖, 方爱丽, 魏新江
鲁东大学数学与统计科学学院,山东 烟台 264039
Bayesian Opinion Evolution Model Based on Weibo Data Mining
LIU Ying, FANG Aili, WEI Xinjiang
School of Mathematics and Statistics, Ludong University, Yantai 264039, China
全文: PDF(3890 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑到在微博信息传播过程中,每一位网络用户的观点都受到其前一位网络用户观点的影响,提出建立基于微博数据挖掘的贝叶斯观点演化模型。以“动态清零政策是我国抗疫总方针”为关键话题词,利用Python爬取微博评论数据,经过数据预处理和分词,对贝叶斯观点演化模型进行实证分析,结果发现官方媒体对舆情的及时引导对情感演化倾向起到重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘颖
方爱丽
魏新江
关键词 微博情感分析观点演化贝叶斯更新    
Abstract:Considering that in the process of microblog information dissemination, the opinion of each network user is influenced by the opinions of the previous network user. Therefore, we propose a Bayesian opinion evolution model based on weibo data mining. With “dynamic zero policy is the general policy of China′s fight against the epidemic” as the key word, Python is used to crawl the Weibo comment data. After data preprocessing and word segmentation, the Bayesian opinion evolution model is empirically analyzed. Empirical analysis shows that the timely guidance of public opinion by official media plays an important role in sentiment evolution tendency.
Key wordsweibo    sentiment analysis    opinions evolution    Bayesian updating
收稿日期: 2022-10-31      出版日期: 2023-10-08
ZTFLH:  O29  
基金资助:国家自然科学基金(62273172);山东省自然科学基金(ZR2020MF078)
通讯作者: 方爱丽(1971),女,山东蓬莱人,博士,副教授,主要研究方向为复杂网络理论与应用。   
作者简介: 刘颖(1998),女,山东蓬莱人,硕士研究生,主要研究方向为数据挖掘与分析。
引用本文:   
刘颖, 方爱丽, 魏新江. 基于微博数据挖掘的贝叶斯观点演化模型[J]. 复杂系统与复杂性科学, 2023, 20(3): 52-59.
LIU Ying, FANG Aili, WEI Xinjiang. Bayesian Opinion Evolution Model Based on Weibo Data Mining. Complex Systems and Complexity Science, 2023, 20(3): 52-59.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.007      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/52
[1] 中国互联网络中心.第49次中国互联网络发展状况统计报告[R].北京:中国互联网络中心,2022.
China Internet Network Information Center. The 49th China statistical report on internet development [R].Beijing: CNNI,2022.
[2] 李慧, 王丽婷.基于词项热度的微博热点话题发现研究[J]. 情报科学,2018,36(4):4550.
LI H, WANG L T.Research on microblog hot topic discovery based on word item popularity[J]. Information Science, 2018,36(4): 4550.
[3] 陈娟,刘燕平,邓胜利.政务微博辟谣信息传播效果的影响因素研究[J].情报科学,2018,36(1):9195.
CHEN J, LIU Y P, DENG S L. Research on the influencing factors of information dissemination effect of government microblog dispelling rumors[J]. Information Science, 2018, 36(1): 9195.
[4] 陈春阳,黄秀玲. 微博舆情的生成机制和传播规律研究[J]. 情报科学,2018, 36(4):3237.
CHEN C Y, HUANG X L. Research on generation mechanism and propagation law of microblog public opinion [J].Information Science, 2018, 36(4): 3237.
[5] 纪雪梅. 特定事件情境下中文微博用户情感挖掘与传播研究[D]. 天津:南开大学,2014.
JI X M. Research on sentiment mining and communication of Chinese microblog users in specific event context[D]. Tianjin: Nankai University, 2014.
[6] 张鹏,兰月新,李昊青,等. 基于HAYASHI数量化理论的网络谣言分类应对策略分析[J]. 情报杂志,2016,35(1):110115.
ZHANG P, LAN Y X, LI H Q, et al. Analysis of internet rumor classification based on HAYASHI quantification theory [J]. Journal of Information, 2016, 35(1): 110115.
[7] 杨爽,陈芬. 基于SVM多特征融合的微博情感多级分类研究[J]. 数据分析与知识发现, 2017, 1(2):7379.
YANG S, CHEN F. Research on micro-blog sentiment multi-level classification based on SVM multi-feature fusion [J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 7379.
[8] 徐军,丁宇新,王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报,2007(6):95100.
XU J, DING Y X, WANG X L. Automatic sentiment classification of news based on machine learning[J]. Journal of Information Science, 2007(6): 95100.
[9] WAJDI A, FURQAN R, MOHAMED W M, et al. Sentiment analysis on twitter data integrating textBlob and deep learning models: The case of US airline industry[J]. Knowledge-Based Systems, 2022, 255: 109780.
[10] FITRI V A, ANDRESWARI R, HASIBUAN M A. Sentiment analysis of social media twitter with case of anti-LGBT campaign in Indonesia using naïve bayes, decision tree, and random forest algorithm[J]. Procedia Computer Science, 2019, 161: 765772.
[11] RUZ G A, HENRIQUZE P A, MASCARENO A. Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers[J]. Future Generation Computer Systems, 2020, 106: 92104.
[12] BILAL M, ISRAR H, SHAHID M, et al. Sentiment classification of Roman-Urdu opinions using naïve bayesian, decision tree and KNN classification techniques[J]. Journal of King Saud University-Computer and Information Sciences, 2016, 28(3): 330344.
[13] NGUYEN D A, NGO V L, NGUYEN K A, et al. Boosting prior knowledge in streaming variational Bayes[J]. Neurocomputing, 2021, 424: 143159.
[14] KRAFFT P M, SHMUELI E, GRIFFITHS T L, et al. Bayesian collective learning emerges from heuristic social learning[J]. Cognition, 2021, 212: 104469.
[15] JADBABAIE A, MOLAVI P, SANDRONI A, et al. Non-Bayesian social learning[J]. Games and Economic Behavior, 2012, 76(1): 210225.
[16] FANG A L. The influence of communication structure on opinion dynamics in social networks with multiple true states[J]. Applied Mathematics and Computation, 2021, 406: 126262.
[17] NAVARRO D J, PERFORS A, KARY A, et al. When extremists win: cultural transmission via iterated learning when populations are heterogeneous[J]. Cognitive Science, 2018, 42(7): 21082149.
[18] THOMPSON B, GRIFFITHS T. Inductive biases constrain cumulative cultural evolution[C] //Colleen M. Proceedings of the 41th Annual Meeting of the Cognitive Science Society. Canada: CogSci, 2019: 11111117.
[19] HSU C C, AJORLOU A, JADBABAIE A. A theory of misinformation spread on social networks[J]. SSRN Electronic Journal, 2019:3391585.
[20] ZERVOUDAKIS S, MARAKAKIS E, KONDYLAKIS H, et al. Opinion mine: a Bayesian-based framework for opinion mining using twitter data[J]. Machine Learning with Applications, 2021, 3: 100018.
[21] PINKERTON B, Finding what people want: experiences with the WebCrawler[C] // Proceedings of the 2nd International World Wide Web. Medford, NJ, USA: Learned Information, 1994.
[22] AHMADI-ABKENARI F, SELAMAT A. An architecture for a focused trend parallel Web crawler with the application of clickstream analysis[J]. Information Sciences, 2012, 184(1): 266281.
[1] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
[2] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[3] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[4] 郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
[5] 覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
[6] 徐云程, 胡华, 孙小军. 三层无标度关联网络协同传播模型阈值研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed