Abstract:Considering that in the process of microblog information dissemination, the opinion of each network user is influenced by the opinions of the previous network user. Therefore, we propose a Bayesian opinion evolution model based on weibo data mining. With “dynamic zero policy is the general policy of China′s fight against the epidemic” as the key word, Python is used to crawl the Weibo comment data. After data preprocessing and word segmentation, the Bayesian opinion evolution model is empirically analyzed. Empirical analysis shows that the timely guidance of public opinion by official media plays an important role in sentiment evolution tendency.
刘颖, 方爱丽, 魏新江. 基于微博数据挖掘的贝叶斯观点演化模型[J]. 复杂系统与复杂性科学, 2023, 20(3): 52-59.
LIU Ying, FANG Aili, WEI Xinjiang. Bayesian Opinion Evolution Model Based on Weibo Data Mining. Complex Systems and Complexity Science, 2023, 20(3): 52-59.
[1] 中国互联网络中心.第49次中国互联网络发展状况统计报告[R].北京:中国互联网络中心,2022. China Internet Network Information Center. The 49th China statistical report on internet development [R].Beijing: CNNI,2022. [2] 李慧, 王丽婷.基于词项热度的微博热点话题发现研究[J]. 情报科学,2018,36(4):4550. LI H, WANG L T.Research on microblog hot topic discovery based on word item popularity[J]. Information Science, 2018,36(4): 4550. [3] 陈娟,刘燕平,邓胜利.政务微博辟谣信息传播效果的影响因素研究[J].情报科学,2018,36(1):9195. CHEN J, LIU Y P, DENG S L. Research on the influencing factors of information dissemination effect of government microblog dispelling rumors[J]. Information Science, 2018, 36(1): 9195. [4] 陈春阳,黄秀玲. 微博舆情的生成机制和传播规律研究[J]. 情报科学,2018, 36(4):3237. CHEN C Y, HUANG X L. Research on generation mechanism and propagation law of microblog public opinion [J].Information Science, 2018, 36(4): 3237. [5] 纪雪梅. 特定事件情境下中文微博用户情感挖掘与传播研究[D]. 天津:南开大学,2014. JI X M. Research on sentiment mining and communication of Chinese microblog users in specific event context[D]. Tianjin: Nankai University, 2014. [6] 张鹏,兰月新,李昊青,等. 基于HAYASHI数量化理论的网络谣言分类应对策略分析[J]. 情报杂志,2016,35(1):110115. ZHANG P, LAN Y X, LI H Q, et al. Analysis of internet rumor classification based on HAYASHI quantification theory [J]. Journal of Information, 2016, 35(1): 110115. [7] 杨爽,陈芬. 基于SVM多特征融合的微博情感多级分类研究[J]. 数据分析与知识发现, 2017, 1(2):7379. YANG S, CHEN F. Research on micro-blog sentiment multi-level classification based on SVM multi-feature fusion [J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 7379. [8] 徐军,丁宇新,王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报,2007(6):95100. XU J, DING Y X, WANG X L. Automatic sentiment classification of news based on machine learning[J]. Journal of Information Science, 2007(6): 95100. [9] WAJDI A, FURQAN R, MOHAMED W M, et al. Sentiment analysis on twitter data integrating textBlob and deep learning models: The case of US airline industry[J]. Knowledge-Based Systems, 2022, 255: 109780. [10] FITRI V A, ANDRESWARI R, HASIBUAN M A. Sentiment analysis of social media twitter with case of anti-LGBT campaign in Indonesia using naïve bayes, decision tree, and random forest algorithm[J]. Procedia Computer Science, 2019, 161: 765772. [11] RUZ G A, HENRIQUZE P A, MASCARENO A. Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers[J]. Future Generation Computer Systems, 2020, 106: 92104. [12] BILAL M, ISRAR H, SHAHID M, et al. Sentiment classification of Roman-Urdu opinions using naïve bayesian, decision tree and KNN classification techniques[J]. Journal of King Saud University-Computer and Information Sciences, 2016, 28(3): 330344. [13] NGUYEN D A, NGO V L, NGUYEN K A, et al. Boosting prior knowledge in streaming variational Bayes[J]. Neurocomputing, 2021, 424: 143159. [14] KRAFFT P M, SHMUELI E, GRIFFITHS T L, et al. Bayesian collective learning emerges from heuristic social learning[J]. Cognition, 2021, 212: 104469. [15] JADBABAIE A, MOLAVI P, SANDRONI A, et al. Non-Bayesian social learning[J]. Games and Economic Behavior, 2012, 76(1): 210225. [16] FANG A L. The influence of communication structure on opinion dynamics in social networks with multiple true states[J]. Applied Mathematics and Computation, 2021, 406: 126262. [17] NAVARRO D J, PERFORS A, KARY A, et al. When extremists win: cultural transmission via iterated learning when populations are heterogeneous[J]. Cognitive Science, 2018, 42(7): 21082149. [18] THOMPSON B, GRIFFITHS T. Inductive biases constrain cumulative cultural evolution[C] //Colleen M. Proceedings of the 41th Annual Meeting of the Cognitive Science Society. Canada: CogSci, 2019: 11111117. [19] HSU C C, AJORLOU A, JADBABAIE A. A theory of misinformation spread on social networks[J]. SSRN Electronic Journal, 2019:3391585. [20] ZERVOUDAKIS S, MARAKAKIS E, KONDYLAKIS H, et al. Opinion mine: a Bayesian-based framework for opinion mining using twitter data[J]. Machine Learning with Applications, 2021, 3: 100018. [21] PINKERTON B, Finding what people want: experiences with the WebCrawler[C] // Proceedings of the 2nd International World Wide Web. Medford, NJ, USA: Learned Information, 1994. [22] AHMADI-ABKENARI F, SELAMAT A. An architecture for a focused trend parallel Web crawler with the application of clickstream analysis[J]. Information Sciences, 2012, 184(1): 266281.