Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 28-34    DOI: 10.13306/j.1672-3813.2024.01.004
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于双层网络频率控制的分布式风电并网研究
梁婵娟, 邹艳丽, 吴克祥, 邵贝贝
广西师范大学电子与信息工程学院,广西 桂林 541004
Study on Grid Access of Distributed Wind Power Stations Based on Frequency Control of Two-layer Network
LIANG Chanjuan, ZOU Yanli, WU Kexiang, SHAO Beibei
School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004,China
全文: PDF(2712 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究含通信控制层的双层电网中分布式风电入网位置的选择,电网层采用二阶类Kuramoto模型进行建模,通信控制层收集发电机及其邻居节点信息形成控制信号并调整发电机的频率。根据负荷到原电网发电机节点的平均距离定义了3种并网方式,研究比较了含功率波动的分布式风电并网时最佳的入网位置。研究表明,加入双层网络频率控制可有效提高电网的同步性能和抗扰能力;分布式风电选择离原电网发电机节点平均距离小的负荷并网可提高电网稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁婵娟
邹艳丽
吴克祥
邵贝贝
关键词 双层网络频率控制风力电站分布式电站并网电网稳定    
Abstract:This paper studies the selection of grid access location for distributed wind power stations in a two-layer grid with a communication control layer. The power grid layer adopts the second-order Kuramoto-like model for modeling, and the communication control layer collects the information of the generators and their neighbor nodes to form control signals and adjusts the frequencies of the generator nodes. According to the average distance from each load node to the generator nodes of the original grid, three access models of the distributed power stations are defined, and the optimal grid access locations for distributed wind power stations with intermittent power fluctuations is studied. Study shows that the synchronization performance and anti-interference ability of the power grid can be effectively improved by adding the frequency control of the two-layer network. In addition, the distributed wind power stations can improve grid stability by selecting load nodes with a small average distance from the generator nodes of the original grid to be connected to the grid.
Key wordstwo-layer network    frequency control    wind power plant    grid access of distributed power stations    grid stability
收稿日期: 2022-09-26      出版日期: 2024-04-26
ZTFLH:  TM711  
基金资助:国家自然科学基金(12162005);广西重大科技专项(桂科AA21077015)
通讯作者: 邹艳丽(1972-),女,河北沧州人,博士,教授,主要研究方向为智能电网的优化与稳定控制、复杂网络建模与动力学行为分析。   
作者简介: 梁婵娟(1998-),女,广西贵港人,硕士研究生,主要研究方向为智能电网优化控制。
引用本文:   
梁婵娟, 邹艳丽, 吴克祥, 邵贝贝. 基于双层网络频率控制的分布式风电并网研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 28-34.
LIANG Chanjuan, ZOU Yanli, WU Kexiang, SHAO Beibei. Study on Grid Access of Distributed Wind Power Stations Based on Frequency Control of Two-layer Network[J]. Complex Systems and Complexity Science, 2024, 21(1): 28-34.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.004      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/28
[1] UECKERDT F, BRECHA R, LUDERER G. Analyzing major challenges of wind and solar variability in power systems[J]. Renewable Energy, 2015, 81: 1-10.
[2] ANVARI M, LOHMANN G, WÄCHTER M, et al. Short term fluctuations of wind and solar power systems[J]. New Journal of Physics, 2016, 18(6): 063027.
[3] ANVARI M, WÄCHTER M, PEINKE J. Phase locking of wind turbines leads to intermittent power production[J]. Europhysics Letters, 2016, 116(6): 60009.
[4] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[5] GUERRERO J M, VASQUEZ J C, MATAS J, et al. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 158-172.
[6] BIDRAM A, DAVOUDI A. Hierarchical structure of microgrids control system[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1963-1976.
[7] LI Z, ZANG C, ZENG P, et al. Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 679-690.
[8] FILATRELLA G, NIELSEN A, PEDERSEN N. Analysis of a power grid using a kuramoto-like model[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2008, 61: 485-491.
[9] NING D, WU X, FENG H, et al. Inter-layer generalized synchronization of two-layer impulsively-coupled networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 79: 104947.
[10] 马海瑛, 肖玉芝, 赵海兴, 等. 三层复杂网络模型构建及特性分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 16-29.
MA H Y, XIAO Y Z, ZHAO H X, et al. Three-layer complex network model construction and characteristic analysis[J]. Complex Systems and Complexity Science, 2020, 17(4): 16-29.
[11] 吴宗柠, 狄增如, 樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报, 2021, 50(1): 106-120.
WU Z N, DI Z R, FAN Y. The structure and function of multilayer networks: progress and prospects[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 106-120.
[12] STRENGE L, SCHULTZ P, KURTHS J, et al. A multiplex, multi-timescale model approach for economic and frequency control in power grids[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2020, 30(3): 033138.
[13] SCHMIETENDORF K, PEINKE J, KAMPS O. The impact of turbulent renewable energy production on power grid stability and quality[J]. The European Physical Journal B, 2017, 90(11): 222.
[14] TOTZ C H, OLMI S, SCHÖLL E. Control of synchronization in two-layer power grids[J]. Physical Review E, 2020, 102(2): 022311.
[15] CARARETO R, BAPTISTA M S, GREBOGI C. Natural synchronization in power-grids with anti-correlated units[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 1035-1046.
[16] 陶维青, 李嘉茜, 丁明, 等. 分布式电源并网标准发展与对比[J]. 电气工程学报, 2016, 11(4): 1-8,46.
TAO W Q , LI J X, DING M, et al. Development and comparison on standard for interconnecting distributed resources with electric power systems[J]. Journal of Electrical Engineering, 2016, 11(4): 1-8,46.
[17] 王意, 邹艳丽, 李可, 等. 分布式电站入网方式对电网同步的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 24-31.
WANG Y , ZOU Y L, Li K , et al. The influence of the distributed power station connection modes on the power grid synchronization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 24-31.
[18] AL-SHETWI A Q, HANNAN M A, JERN K P, et al. Grid-connected renewable energy sources: review of the recent integration requirements and control methods[J]. Journal of Cleaner Production, 2020, 253: 119831.
[19] WOLFRAM M, SCHLEGEL S, WESTERMANN D. Closed loop flow detection in power systems based on floyd-warshall algorithm[C]//2017 IEEE Manchester Power Tech, Manchester, UK: IEEE. 2017: 1-6.
[1] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[2] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
[3] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed