Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 30-37    DOI: 10.13306/j.1672-3813.2024.02.004
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于改进KNN近邻实体的知识图谱嵌入模型
刘婕, 孙更新, 宾晟
青岛大学计算机科学技术学院,山东 青岛 266071
Knowledge Graph Embedding Model with the Nearest Neighbors Based on Improved KNN
LIU Jie, SUN Gengxin, BIN Sheng
College of Computer Science & Technology, Qingdao University, Qingdao 266071, China
全文: PDF(2299 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆网络对其编码生成增强的实体表示。通过对公共数据集上实验结果的分析,以上两个模型在仅使用近邻节点的情况下均实现了对基准模型(CoNE)的性能超越,缓解了数据稀疏问题并改善了知识表示性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘婕
孙更新
宾晟
关键词 知识图谱知识图谱嵌入邻居节点K近邻算法图记忆网络    
Abstract:In order to better represent the rare entities with a small number of neighbors, this paper proposes a knowledge graph embedding model based on the nearest neighbors (NNKGE), which uses the K-Nearest Neighbor algorithm to obtain the nearest neighbors of the target entity as extended information. Based on this, the relational nearest neighbors-based knowledge graph embedding model (RNNKGE) is proposed. To generate an enhanced entity representation, the nearest neighbors of the target entity in relation are obtained by the improved K-Nearest Neighbor algorithm and encoded by the graph memory network. Through the analysis of the experimental results on the public datasets, the above two models outperform the benchmark model (CoNE) in the case of using only the nearest neighbor nodes, alleviating the data sparsity problem and improving the knowledge representation performance.
Key wordsknowledge graph    knowledge graph embedding    neighbor nodes    K-nearest neighbor algorithm    graph memory network
收稿日期: 2022-09-09      出版日期: 2024-07-17
ZTFLH:  TP181  
  O157.5  
基金资助:教育部人文社会科学规划基金(21YJA860001);山东省自然基金面上项目(ZR2021MG006)
通讯作者: 宾晟(1979-),女,山东淄博人,博士,副教授,主要研究方向为复杂网络中的传播动力学及相关传播模型。   
作者简介: 第一作者: 刘婕(1995-),女,山东菏泽人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
刘婕, 孙更新, 宾晟. 基于改进KNN近邻实体的知识图谱嵌入模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 30-37.
LIU Jie, SUN Gengxin, BIN Sheng. Knowledge Graph Embedding Model with the Nearest Neighbors Based on Improved KNN[J]. Complex Systems and Complexity Science, 2024, 21(2): 30-37.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.004      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/30
[1]PHAN T, DO P. Building a Vietnamese question answering system based on knowledge graph and distributed CNN[J]. Neural Computing and Applications, 2021, 33(21): 14887-14907.
[2]MU S, LI Y, ZHAO W X, et al. Knowledge-guided disentangled representation learning for recommender systems[J]. ACM Transactions on Information Systems (TOIS), 2021, 40(1): 1-26.
[3]ZHAO X J, CHEN H, XING Z C, et al. Brain-inspired search engine assistant based on knowledge graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(8):4386-4400.
[4]XIE Z, ZHU R, ZHAO K, et al. Dual gated graph attention networks with dynamic iterative training for cross-lingual entity alignment[J]. ACM Transactions on Information Systems (TOIS), 2021, 40(3): 1-30.
[5]BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[J]. 2013, 2: 2787-2795.
[6]LIN H L, LIU Y, WANG W D, et al. Learning entity and relation embeddings for knowledge resolution[J]. Procedia Computer Science, 2017, 108: 345-354.
[7]WANG K, LIU Y, XU X, et al. Enhancing knowledge graph embedding by composite neighbors for link prediction[J]. Computing, 2020, 102(12): 2587-2606.
[8]NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 4710-4723.
[9]ZHU Q, ZHOU X, WU J, et al. Neighborhood-aware attentional representation for multilingual knowledge graphs [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. China: IJCAI, 2019: 1943-1949.
[10] ZHANG Q J, WANG R G, YANG J, et al. Knowledge graph embedding by translating in time domain space for link prediction[J]. Knowledge-Based Systems, 2021, 212: 106564.
[11] DETTMERS T, MINERVINI P, STENETORPP, et al. Convolutional 2D knowledge graph embeddings [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2018: 1811-1818.
[12] NGUYEN D Q, NGUYEN D Q, NGUYEN T D, et al. A convolutional neural network-based model for knowledge base completion and its application to search personalization[J]. Semantic Web, 2019, 10(5): 947-960.
[13] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
[14] XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions [C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2016: 2659-2665.
[15] ZHANG Q J, WANG R G, YANG J, et al. Structural context-based knowledge graph embedding for link prediction[J]. Neurocomputing, 2022, 470: 109-120.
[16] LI Z F, LIU H, ZHANG Z L, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(8): 3961-3973.
[17] PU F, ZHANG Z, FENG Y, et al. Learning context-based embeddings for knowledge graph completion[J]. Journal of Data and Information Science, 2022, 7(2): 84-106.
[18] BORREGO A, AYALA D, HERNÁNDEZ I, et al. CAFE: Knowledge graph completion using neighborhood-aware features[J]. Engineering Applications of Artificial Intelligence, 2021, 103: 104302.
[19] LI M D, SUN Z Y, ZHANG S H, et al. Enhancing knowledge graph embedding with relational constraints[J]. Neurocomputing, 2021, 429: 77-88.
[20] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research, 2020, 9: 381-386.
[21] ZHOU Z H, WANG C, FENG Y, et al.JointE: Jointly utilizing 1D and 2D convolution for knowledge graph embedding[J]. Knowledge-Based Systems, 2022, 240: 108100.
[22] BOLLACKER K,EVANS C,PARITOSH P,et al. Freebase:a collaboratively created graph database for structuring human knowledge [C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1249.
[23] SUN Z, DENG Z H, NIE J Y, et al.RotatE: knowledge graph embedding by relational rotation in complex space [DB/OL]//[2022-06-05].http://arxiv.org/pdf/1902.10197.
[1] 顾亦然, 徐泽彬, 杨海根. 基于多任务与用户兴趣变化的短视频用户行为预测算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed