Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 22-29    DOI: 10.13306/j.1672-3813.2024.02.003
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于博弈论的关联网络攻防博弈分析
王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧
江苏师范大学电气工程及自动化学院,江苏 徐州 221116
Attack-defense Game Analysis of Interdependent Networks Based on Game Theory
WANG Shuliang, SUN Jingya, BIAN Jiazhi, ZHANG Jianhua, DONG Qiqi, LI Junjing
School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116,China
全文: PDF(2211 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 根据现实中关联网络复杂的关联特性和网络中重要的评估指标,提出了5种不同的耦合方式,建立了9种关联网络模型;考虑到网络中信息的传输,再分配和级联故障,建立了基于介数虚拟流的级联失效模型;基于博弈论,从复杂网络的角度分析了关键基础设施的攻防问题,分析了多种关联网络的鲁棒性。发现了关联网络中博弈参与者的偏好,为基础设施网络的保护提供了决策支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淑良
孙静雅
卞嘉志
张建华
董琪琪
李君婧
关键词 复杂网络关联网络攻防博弈鲁棒性分析    
Abstract:According to the complex correlation characteristics of the actual interdependent network and the important evaluation indicators in the network, five different coupling methods are proposed, and nine interdependent network models are established. Considering the information transmission, redistribution and cascading failures in the network, a cascading failure model based on betweenness artificial flow models is established. We based on the game theory, attack-defense game problems of critical infrastructure are analyzed from the perspective of complex network, and the robustness of various interdependent networks is analyzed. We discovered the preferences of game participants in the interdependent networks, providing decision support for the protection of infrastructure networks.
Key wordscomplex network    interdependent network    attack-defense game    robustness analysis
收稿日期: 2022-05-20      出版日期: 2024-07-17
ZTFLH:  O157.5  
  O225  
基金资助:国家自然科学基金(61801197,61503166)
通讯作者: 孙静雅(1997-),女,安徽定远人,硕士研究生,主要研究方向为网络攻防博弈。   
作者简介: 第一作者: 王淑良(1981-),男,山东临沂人,博士,教授,主要研究方向为网络鲁棒性。
引用本文:   
王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
WANG Shuliang, SUN Jingya, BIAN Jiazhi, ZHANG Jianhua, DONG Qiqi, LI Junjing. Attack-defense Game Analysis of Interdependent Networks Based on Game Theory[J]. Complex Systems and Complexity Science, 2024, 21(2): 22-29.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.003      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/22
[1]ALCARAZ C, ZEADALLY S. Critical infrastructure protection: Requirements and challenges for the 21st century[J]. International journal of critical infrastructure protection, 2015, 8: 53-66.
[2]卿斯汉.关键基础设施安全防护[J].信息网络安全,2015(2):1-6.
QING S H. Security protection of critical infrastructure[J]. Netinfo Security, 2015 (2):1-6.
[3]刘涛,陈忠,陈晓荣.复杂网络理论及其应用研究概述[J].系统工程,2005,23(6):1-7.
LIU T, CHEN Z, CHEN X R. Overview of complex network theory and its application research [J]. Systems Engineering,2005,23(6):1-7.
[4]郭鹏,杨晓琴.博弈论与纳什均衡[J].哈尔滨师范大学自然科学学报,2006,22(4):25-28.
GUO P, YANG X Q. Game theory and Nash equilibrium [J]. Journal of Natural Sciences, Harbin Normal University, 2006,22 (4): 25-28.
[5]周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理,2005,34(1):31-36.
ZHOU T, BAI W J, WANG B H, et al. A brief review of complex networks[J]. Physics, 2005,34 (1): 31-36.
[6]王哲,李建华,康东,等.复杂网络鲁棒性增强策略研究综述[J].复杂系统与复杂性科学,2020,17(3):1-26.
Wang Z, LI J H,KANG D, et al. Review strategies enhance the robustness of complex network[J]. Complex Systems and Complexity Science, 2020,17(03):1-26.
[7]RINALDI S M, PEERENBOOM J P, KELLY T K. Identifying, understanding, and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems Magazine, 2001, 21(6): 11-25.
[8]NOCHENSON A, HEIMANN C F L. Simulation and game-theoretic analysis of an attacker-defender game[C]//Decision and Game Theory for Security: Third International Conference, GameSec 2012, Budapest, Hungary, 2012: 138-151.
[9]VESPIGNANI A. Complex networks: the fragility of interdependency[J]. Nature, 2010, 464:984-985.
[10] 董政呈,方彦军,田猛.相互依存网络抗毁性研究综述[J].复杂系统与复杂性科学,2017,14(3):30-44.
DONG Z C, FANG Y J, TIAN M, Review on vulnerability of interdependent networks[J]. Complex Systems and Complexity Science, 2017,14(3):30-44.
[11] WU D, XIAO H, PENG R. Object defense with preventive strike and false targets[J]. Reliability Engineering & System Safety, 2018, 169: 76-80.
[12] MACKENZIE C A, BAROUD H, BARKER K. Static and dynamic resource allocation models for recovery of interdependent systems: application to the Deepwater Horizon oil spill[J]. Annals of Operations Research, 2016, 236(1): 103-129.
[13] WANG N, JIN Z Y, ZHAO J. Cascading failures of overload behaviors on interdependent networks[J]. Physica A: Statistical Mechanics and its Applications, 2021, 574: 125989.
[14] 马海瑛,肖玉芝,赵海兴,等.三层复杂网络模型构建及特性分析[J].复杂系统与复杂性科学,2020,17(4):16-29.
MA H Y, XIAO Y Z, ZHAO H X, et al. Three-Layer complex network model construction and characteristic analysis[J]. Complex Systems and Complexity Science, 2020,17(4):16-29.
[15] HOTA A R, SUNDARAM S. Interdependent security games on networks under behavioral probability weighting[J]. IEEE Transactions on Control of Network Systems,2016,5(1): 262-273.
[16] 徐云程,胡华,孙小军.三层无标度关联网络协同传播模型阈值研究[J].复杂系统与复杂性科学,2021,18(3):1-8.
XU Y C, HU H, SUN X J, Research on threshold of cooperative propagation model of three-layer scale-free associative network[J]. Complex Systems and Complexity Science, 2021,18(3):1-8.
[17] HAUSKEN K, LEVITIN G. Minmax defense strategy for complex multi-state systems[J]. Reliability Engineering & System Safety, 2009, 94(2): 577-587.
[18] LI Y, LIN J, ZHANG C, et al. Joint optimization of structure and protection of interdependent infrastructure networks[J]. Reliability Engineering & System Safety, 2022, 218: 108163.
[19] FU C Q, GAO Y J, ZHONG J L, et al. Attack-defense game for critical infrastructure considering the cascade effect[J]. Reliability Engineering & System Safety, 2021, 216: 107958.
[20] PENG R, WU D, SUN M, et al. An attack-defense game on interdependent networks[J]. Journal of the Operational Research Society, 2021, 72(10): 2331-2341.
[21] 任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报,2014,59(13):1175-1197.
REN X L, LÜ L Y. Review of ranking nodes in complex networks[J]. Chinese Science Bulletin, 2014,59(13):1175-1197.
[22] 张强,曹军海,宋太亮,等.装备保障网络中考虑负载再分配的级联失效分析[J].兵器装备工程学报,2021,42(6):86-90.
ZHANG Q, CAO J H,SONG T L, et al. Cascading failure analysis considering load redistribution in equipment support network[J]. Journal of Ordnance Equipment Engineering, 2021,42(6):86-90.
[23] 种鹏云,尹惠.蓄意攻击策略下危险品运输网络级联失效仿真[J].复杂系统与复杂性科学,2018,15(1):45-55.
ZHONG P Y, YIN H, Simulation of cascading failures on hazardous material transportation networks under targeted attack[J]. Complex Systems and Complexity Science, 2018,15(1):45-55.
[24] OUYANG M. Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2013, 23(2): 023114.
[25] CRUCITTI P, LATORA V, MARCHIORI M. Model for cascading failures in complex networks[J]. Physical Review E, 2004, 69(4): 045104.
[26] 王家辉.博弈论中的"囚徒困境"模型[J].统计与决策,2005(8):19-20.
WANG J H. The "prisoner′s dilemma" model in game theory[J]. Statistics and Decision Making, 2005(8):19-20.
[27] ZHANG C, RAMIREZ-MARQUEZ J E, WANG J. Critical infrastructure protection using secrecy-a discrete simultaneous game[J]. European Journal of Operational Research, 2015, 242(1): 212-221.
[28] TARDOS E, VAZIRANI V V. Basic solution concepts and computational issues[DB/OL]. [2022-03-15] https://www.cs.cornell.edu/~eva/agtchap1.pdf.
[29] LEMKE C E, HOWSON, J T J. Equilibrium points of bimatrix games[J]. Journal of the Society for Industrial and Applied Mathematics, 1964, 12(2): 413-423.
[30] PORTER R, NUDELMAN E, SHOHAM Y. Simple search methods for finding a nash equilibrium[J]. Games and Economic Behavior, 2008, 63(2): 642-662.
[31] NASH J F. Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences, 1950, 36(1): 48-49.
[1] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[2] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[3] 刘建刚, 陈芦霞. 突发事件下粮食股市的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 52-59.
[4] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[5] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[6] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[7] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[8] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[9] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[10] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[11] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[12] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
[13] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[14] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
[15] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed